Improving Short-Term Traffic Flow Prediction using Grey Relational Analysis for Data Filtering and Stacked LSTM Modeling

被引:1
作者
Wu, Zhizhu [1 ]
Huang, Mingxia [1 ]
Xing, Zhibo [1 ]
Yang, Tao [2 ]
机构
[1] Shenyang Jianzhu Univ, Sch Transportat & Geomat Engn, Shenyang 110168, Peoples R China
[2] China Railway Shenyang Bur Grp Co Ltd, Shenyang 110000, Peoples R China
关键词
Traffic flow prediction; GRA-SLSTM; Grey Relation Analysis; Long Short-Term Memory Network; Deep Learning;
D O I
10.15837/ijccc.2024.1.6149
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic flow prediction is one of the critical measures to alleviate traffic congestion. Currently, traffic flow prediction research has made some achievements, but there are still some deficiencies. In order to solve the problems of low prediction accuracy, poor real-time performance, and high data dimensions. This paper proposes a new traffic flow prediction method that employs Grey Relation Analysis (GRA) to detect the correlation between detection points, remove insignificant or uncorrelated traffic flow data points, and hence reduce the data dimensionality of the prediction model. Multiple Long Short-Term Memory (LSTM) models are then stacked to establish the traffic flow prediction model, considering that traffic flow is affected by multi-dimensional spatiotemporal factors, incorporating vehicle speed, occupancy, and traffic volume as inputs. We conducted exper-iments on real datasets, and the results showed that our GRA-SLSTM model improved prediction accuracy by 3.6% compared to other models, while reducing model prediction time by 27.33%. The proposed model's generalization ability is validated by predicting other detection points, which provides significant references for traffic flow prediction research and practical applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Stacked LSTM for Short-Term Traffic Flow Prediction using Multivariate Time Series Dataset
    Md Ashifuddin Mondal
    Zeenat Rehena
    Arabian Journal for Science and Engineering, 2022, 47 : 10515 - 10529
  • [2] Stacked LSTM for Short-Term Traffic Flow Prediction using Multivariate Time Series Dataset
    Mondal, Md Ashifuddin
    Rehena, Zeenat
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (08) : 10515 - 10529
  • [3] A Regularized LSTM Network for Short-Term Traffic Flow Prediction
    Wang, Zhan
    Zhu, Rui
    Zheng, Ming
    Jia, Xuebin
    Wang, Runfang
    Li, Tong
    2019 6TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE 2019), 2019, : 100 - 105
  • [4] Short-term Traffic Flow Prediction with LSTM Recurrent Neural Network
    Kang, Danqing
    Lv, Yisheng
    Chen, Yuan-yuan
    2017 IEEE 20TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2017,
  • [5] Urban Short-Term Traffic Flow Prediction Based on Stacked Autoencoder
    Zhao, Xinran
    Gu, Yuanli
    Chen, Lun
    Shao, Zhuangzhuang
    CICTP 2019: TRANSPORTATION IN CHINA-CONNECTING THE WORLD, 2019, : 5178 - 5188
  • [6] Short-Term Traffic Flow Prediction with Conv-LSTM
    Liu, Yipeng
    Zheng, Haifeng
    Feng, Xinxin
    Chen, Zhonghui
    2017 9TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2017,
  • [7] Short Term Traffic Flow Prediction Based on LSTM
    Li, Jinhong
    Gao, Lei
    Song, Wei
    Wei, Lu
    Shi, Yaxing
    2018 NINTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2018, : 251 - 255
  • [8] An Evaluation of HTM and LSTM for Short-Term Arterial Traffic Flow Prediction
    Mackenzie, Jonathan
    Roddick, John F.
    Zito, Rocco
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2019, 20 (05) : 1847 - 1857
  • [9] A distributed WND-LSTM model on MapReduce for short-term traffic flow prediction
    Xia, Dawen
    Zhang, Maoting
    Yan, Xiaobo
    Bai, Yu
    Zheng, Yongling
    Li, Yantao
    Li, Huaqing
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (07) : 2393 - 2410
  • [10] A distributed WND-LSTM model on MapReduce for short-term traffic flow prediction
    Dawen Xia
    Maoting Zhang
    Xiaobo Yan
    Yu Bai
    Yongling Zheng
    Yantao Li
    Huaqing Li
    Neural Computing and Applications, 2021, 33 : 2393 - 2410