Predicting clinical progression trajectories of early Alzheimer's disease patients

被引:8
作者
Devanarayan, Viswanath [1 ,2 ]
Ye, Yuanqing [1 ]
Charil, Arnaud [1 ]
Andreozzi, Erica [1 ]
Sachdev, Pallavi [1 ]
Llano, Daniel A. [3 ,4 ]
Tian, Lu [5 ]
Zhu, Liang [1 ]
Hampel, Harald [1 ]
Kramer, Lynn [1 ]
Dhadda, Shobha [1 ]
Irizarry, Michael [1 ]
机构
[1] Eisai Inc, Clin Evidence Generat, 200 Metro Blvd, Nutley, NJ 07110 USA
[2] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL USA
[3] Carle Illinois Coll Med, Urbana, IL USA
[4] Univ Illinois, Dept Mol & Integrat Physiol, Urbana, IL USA
[5] Stanford Univ, Sch Med, Dept Biomed Data Sci, Palo Alto, CA USA
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
clinical trial enrichment; disease progression; machine learning; mild cognitive impairment; prognosis; GENERALIZED LINEAR-MODELS; SURFACE-BASED ANALYSIS; DEMENTIA; TRIALS; IDENTIFICATION; HETEROGENEITY; SOLANEZUMAB; SYSTEM;
D O I
10.1002/alz.13565
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BackgroundModels for forecasting individual clinical progression trajectories in early Alzheimer's disease (AD) are needed for optimizing clinical studies and patient monitoring.METHODSPrediction models were constructed using a clinical trial training cohort (TC; n = 934) via a gradient boosting algorithm and then evaluated in two validation cohorts (VC 1, n = 235; VC 2, n = 421). Model inputs included baseline clinical features (cognitive function assessments, APOE epsilon 4 status, and demographics) and brain magnetic resonance imaging (MRI) measures.RESULTSThe model using clinical features achieved R2 of 0.21 and 0.31 for predicting 2-year cognitive decline in VC 1 and VC 2, respectively. Adding MRI features improved the R2 to 0.29 in VC 1, which employed the same preprocessing pipeline as the TC. Utilizing these model-based predictions for clinical trial enrichment reduced the required sample size by 20% to 49%.DISCUSSIONOur validated prediction models enable baseline prediction of clinical progression trajectories in early AD, benefiting clinical trial enrichment and various applications.
引用
收藏
页码:1725 / 1738
页数:14
相关论文
共 69 条
  • [1] Perspectives and challenges in patient stratification in Alzheimer's disease
    Abdelnour, Carla
    Agosta, Federica
    Bozzali, Marco
    Fougere, Bertrand
    Iwata, Atsushi
    Nilforooshan, Ramin
    Takada, Leonel T.
    Vinuela, Felix
    Traber, Martin
    [J]. ALZHEIMERS RESEARCH & THERAPY, 2022, 14 (01)
  • [2] Barnett JH, 2016, CURR TOP BEHAV NEURO, V28, P449, DOI 10.1007/7854_2015_5001
  • [3] Next-generation clinical trials: Novel strategies to address the challenge of tumor molecular heterogeneity
    Catenacci, Daniel V. T.
    [J]. MOLECULAR ONCOLOGY, 2015, 9 (05) : 967 - 996
  • [4] Cortical surface-based analysis - I. Segmentation and surface reconstruction
    Dale, AM
    Fischl, B
    Sereno, MI
    [J]. NEUROIMAGE, 1999, 9 (02) : 179 - 194
  • [5] Insights into the challenges faced by chronically critically ill patients, their families and healthcare providers: An interpretive description
    Dammann, Maria
    Staudacher, Sandra
    Simon, Michael
    Jeitziner, Marie-Madlen
    [J]. INTENSIVE AND CRITICAL CARE NURSING, 2022, 68
  • [6] An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
    Desikan, Rahul S.
    Segonne, Florent
    Fischl, Bruce
    Quinn, Brian T.
    Dickerson, Bradford C.
    Blacker, Deborah
    Buckner, Randy L.
    Dale, Anders M.
    Maguire, R. Paul
    Hyman, Bradley T.
    Albert, Marilyn S.
    Killiany, Ronald J.
    [J]. NEUROIMAGE, 2006, 31 (03) : 968 - 980
  • [7] Automated MRI measures predict progression to Alzheimer's disease
    Desikan, Rahul S.
    Cabral, Howard J.
    Settecase, Fabio
    Hess, Christopher P.
    Dillon, William P.
    Glastonbury, Christine M.
    Weiner, Michael W.
    Schmansky, Nicholas J.
    Salat, David H.
    Fischl, Bruce
    [J]. NEUROBIOLOGY OF AGING, 2010, 31 (08) : 1364 - 1374
  • [8] Identification of a Simple and Novel Cut-Point Based Cerebrospinal Fluid and MRI Signature for Predicting Alzheimer's Disease Progression that Reinforces the 2018 NIA-AA Research Framework
    Devanarayan, Priya
    Devanarayan, Viswanath
    Llano, Daniel A.
    [J]. JOURNAL OF ALZHEIMERS DISEASE, 2019, 68 (02) : 537 - 550
  • [9] Heterogeneity of Alzheimer's disease: consequence for drug trials?
    Devi, Gayatri
    Scheltens, Philip
    [J]. ALZHEIMERS RESEARCH & THERAPY, 2018, 10
  • [10] A Phase 3 Trial of Semagacestat for Treatment of Alzheimer's Disease
    Doody, Rachelle S.
    Raman, Rema
    Farlow, Martin
    Iwatsubo, Takeshi
    Vellas, Bruno
    Joffe, Steven
    Kieburtz, Karl
    He, Feng
    Sun, Xiaoying
    Thomas, Ronald G.
    Aisen, Paul S.
    Siemers, Eric
    Sethuraman, Gopalan
    Mohs, Richard
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2013, 369 (04) : 341 - 350