Life span of blowing-up solutions to the Cauchy problem for a time-fractional Schrödinger equation

被引:0
作者
Wang, Sen [1 ]
Zhou, Xian-Feng [1 ]
Pang, Denghao [2 ]
Jiang, Wei [1 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
[2] Anhui Univ, Sch Internet, Hefei 230039, Peoples R China
基金
中国国家自然科学基金;
关键词
Cauchy problem; Time-fractional Schrodinger equation; Blowing-up solutions; Life span; Test function;
D O I
10.1007/s12190-023-01931-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will consider the Cauchy problem for a time-fractional Schrodinger equation with Riemann-Liouville nonlinear fractional integral term. This class of equations have interesting applications for large systems of self-interactions, which allow us to use the fractional calculus techniques to investigate long range interactions and quantum processes. By utilizing the test function method and some important properties of fractional calculus, we give a blow-up result involving the criterion of verifying whether there is a global nontrivial weak solution. Then, by establishing some integral inequalities, we provide an upper bound estimate for the life span of the blowing-up solutions. Finally, a numerical example is presented to demonstrate the validity of our theoretical results. The obtained results generalize the previous ones, because the analogous problem with a time fractional derivative has not been studied so far.
引用
收藏
页码:4401 / 4424
页数:24
相关论文
共 24 条
  • [1] Linearized compact ADI schemes for nonlinear time-fractional Schrodinger equations
    Chen, Xiaoli
    Di, Yana
    Duan, Jinqiao
    Li, Dongfang
    [J]. APPLIED MATHEMATICS LETTERS, 2018, 84 : 160 - 167
  • [2] Time-fractional Schrodinger equation
    Emamirad, Hassan
    Rougirel, Arnaud
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (01) : 279 - 293
  • [3] Fractional Schrodinger equation and time dependent potentials
    Gabrick, E. C.
    Trobia, J.
    Batista, A. M.
    Lenzi, E. K.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 123
  • [4] Optimal vaccination and treatment policies for regional approximate controllability of the time-fractional reaction-diffusion SIR epidemic systems
    Ge, Fudong
    Chen, YangQuan
    [J]. ISA TRANSACTIONS, 2021, 115 : 143 - 152
  • [5] SPACE-TIME FRACTIONAL NONLINEAR SCHRODINGER EQUATION
    Grande, Ricardo
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (05) : 4172 - 4212
  • [6] Life span bounds for reaction-diffusion equation with a space-time integral source term
    Huo, Wentao
    Fang, Zhong Bo
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (04):
  • [7] Kilbas A. A., 2006, N HOLLAND MATH STUDI, V204, DOI DOI 10.1016/S0304-0208(06)80001-0
  • [8] Life span of solutions to a nonlocal in time nonlinear fractional Schrodinger equation
    Kirane, M.
    Nabti, A.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04): : 1473 - 1482
  • [9] Some nonexistence results for space-time fractional Schrodinger equations without gauge invariance
    Kirane, Mokhtar
    Fino, Ahmad Z.
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (04) : 1361 - 1387
  • [10] Kuiper H., 2003, ELECT J DIFFERENTIAL, V2003, P1