FRACTIONAL QUANTUM ANALOGUES OF TRAPEZOID LIKE INEQUALITIES

被引:0
|
作者
Chu, Yu-ming [1 ,2 ]
Awan, Muhammad Uzair [3 ]
Talib, Sadia [3 ]
Noor, Muhammad Aslam [4 ]
Noor, Khalida Inayat [5 ]
机构
[1] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[2] Hangzhou Normal Univ, Inst Adv Study Honoring Chen Jian Gong, Hangzhou 311121, Peoples R China
[3] GC Univ Faisalabad, Dept Math, Faisalabad, Pakistan
[4] COMSATS Univ Islamabad, Islamabad, Pakistan
[5] COMSATS Univ Islamabad, Dept Math, Islamabad, Pakistan
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2023年 / 17卷 / 01期
关键词
Convex; preinvex; fractional; quantum; inequalities; HERMITE-HADAMARD INEQUALITIES; CONVEX;
D O I
10.7153/jmi-2023-17-03
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive two new fractional quantum integral identities. Using these identities we obtain several new fractional quantum estimates of trapezoid like inequalities essentially using the class of preinvex functions.
引用
收藏
页码:31 / 47
页数:17
相关论文
共 50 条
  • [41] Montgomery identity and Ostrowski-type inequalities via quantum calculus
    Sitthiwirattham, Thanin
    Ali, Muhammad Aamir
    Budak, Huseyin
    Abbas, Mujahid
    Chasreechai, Saowaluck
    OPEN MATHEMATICS, 2021, 19 (01): : 1098 - 1109
  • [42] On Fractional Ostrowski-Mercer-Type Inequalities and Applications
    Ramzan, Sofia
    Awan, Muhammad Uzair
    Vivas-Cortez, Miguel
    Budak, Hueseyin
    SYMMETRY-BASEL, 2023, 15 (11):
  • [43] Nonrecurrence and Bell-like inequalities
    Danforth, Douglas G.
    OPEN PHYSICS, 2017, 15 (01): : 762 - 768
  • [44] GENERALIZED OSTROWSKI TYPE INEQUALITIES FOR LOCAL FRACTIONAL INTEGRALS
    Sarikaya, Mehmet Zeki
    Budak, Huseyin
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (04) : 1527 - 1538
  • [45] Hermite-Hadamard type inequalities in the setting of k-fractional calculus theory with applications
    Bin-Mohsen, Bandar
    Awan, Muhammad Uzair
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    AIMS MATHEMATICS, 2020, 5 (01): : 629 - 639
  • [46] Some Simpson's Riemann-Liouville Fractional Integral Inequalities with Applications to Special Functions
    Nasir, Jamshed
    Qaisar, Shahid
    Butt, Saad Ihsan
    Khan, Khuram Ali
    Mabela, Rostin Matendo
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [47] Quantum simpson like type inequalities for q-differentiable convex functions
    Meftah, Badreddine
    Souahi, Abdourazek
    Merad, Meriem
    JOURNAL OF ANALYSIS, 2024, 32 (03) : 1331 - 1365
  • [48] Post-quantum Ostrowski type integral inequalities for functions of two variables
    Vivas-Cortez, Miguel
    Ali, Muhammad Aamir
    Budak, Huseyin
    Sial, Ifra Bashir
    AIMS MATHEMATICS, 2022, 7 (05): : 8035 - 8063
  • [49] SIMPSON'S AND NEWTON'S TYPE QUANTUM INTEGRAL INEQUALITIES FOR PREINVEX FUNCTIONS
    Ali, Muhammad Aamir
    Abbas, Mujahid
    Sehar, Mubarra
    Murtaza, Ghulam
    KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (01): : 193 - 209
  • [50] Inequalities for Fractional Integrals of a Generalized Class of Strongly Convex Functions
    Yan, Tao
    Farid, Ghulam
    Yasmeen, Hafsa
    Shim, Soo Hak
    Jung, Chahn Yong
    FRACTAL AND FRACTIONAL, 2022, 6 (03)