FRACTIONAL QUANTUM ANALOGUES OF TRAPEZOID LIKE INEQUALITIES

被引:0
|
作者
Chu, Yu-ming [1 ,2 ]
Awan, Muhammad Uzair [3 ]
Talib, Sadia [3 ]
Noor, Muhammad Aslam [4 ]
Noor, Khalida Inayat [5 ]
机构
[1] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[2] Hangzhou Normal Univ, Inst Adv Study Honoring Chen Jian Gong, Hangzhou 311121, Peoples R China
[3] GC Univ Faisalabad, Dept Math, Faisalabad, Pakistan
[4] COMSATS Univ Islamabad, Islamabad, Pakistan
[5] COMSATS Univ Islamabad, Dept Math, Islamabad, Pakistan
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2023年 / 17卷 / 01期
关键词
Convex; preinvex; fractional; quantum; inequalities; HERMITE-HADAMARD INEQUALITIES; CONVEX;
D O I
10.7153/jmi-2023-17-03
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive two new fractional quantum integral identities. Using these identities we obtain several new fractional quantum estimates of trapezoid like inequalities essentially using the class of preinvex functions.
引用
收藏
页码:31 / 47
页数:17
相关论文
共 50 条
  • [31] Hermite-Hadamard inequalities for quantum integrals: A unified approach
    Cardoso, J. L.
    Shehata, Enas M.
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 463
  • [32] QUANTUM OSTROWSKI TYPE INEQUALITIES FOR PRE-INVEX FUNCTIONS
    Ali, Muhammad Aamir
    Budak, Huseyin
    Sarikaya, Mehmet Zeki
    Set, Erhan
    MATHEMATICA SLOVACA, 2022, 72 (06) : 1489 - 1500
  • [33] POST-QUANTUM HERMITE-JENSEN-MERCER INEQUALITIES
    Bohner, Martin
    Budak, Huseyin
    Kara, Hasan
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (01) : 17 - 26
  • [34] Exploration of Quantum Milne-Mercer-Type Inequalities with Applications
    Bin-Mohsin, Bandar
    Javed, Muhammad Zakria
    Awan, Muhammad Uzair
    Khan, Awais Gul
    Cesarano, Clemente
    Noor, Muhammad Aslam
    SYMMETRY-BASEL, 2023, 15 (05):
  • [35] Hermite–Hadamard type inequalities for F-convex function involving fractional integrals
    Pshtiwan Othman Mohammed
    Mehmet Zeki Sarikaya
    Journal of Inequalities and Applications, 2018
  • [36] FRACTIONAL QUANTUM HERMITE-HADAMARD-TYPE INEQUALITIES FOR INTERVAL-VALUED FUNCTIONS
    Cheng, Haiyang
    Zhao, Dafang
    Zhao, Guohui
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (09)
  • [37] SOME NEW QUANTUM INEQUALITIES VIA tgs-CONVEX FUNCTIONS
    Noor, M. A.
    Awan, M. U.
    Noor, K. I.
    Safdar, F.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, 9 (02): : 135 - 146
  • [38] GENERALIZED QUANTUM MONTGOMERY IDENTITY AND OSTROWSKI TYPE INEQUALITIES FOR PREINVEX FUNCTIONS
    Kalsoom, Humaira
    Ali, Muhammad Aamir
    Abbas, Mujahid
    Budak, Huseyin
    Murtaza, Ghulam
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 13 (01): : 72 - 90
  • [39] Fractional Ostrowski Type Inequalities via φ - λ-Convex Function
    Hassan, Ali
    Khan, Asif R.
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2024, 21 (01): : 111 - 129
  • [40] Advances in Ostrowski-Mercer Like Inequalities within Fractal Space
    Vivas-Cortez, Miguel
    Awan, Muhammad Uzair
    Asif, Usama
    Javed, Muhammad Zakria
    Budak, Hueseyin
    FRACTAL AND FRACTIONAL, 2023, 7 (09)