Microcomb-based integrated photonic processing unit

被引:132
作者
Bai, Bowen [1 ]
Yang, Qipeng [1 ]
Shu, Haowen [1 ]
Chang, Lin [1 ,2 ,3 ]
Yang, Fenghe [4 ]
Shen, Bitao [1 ]
Tao, Zihan [1 ]
Wang, Jing [5 ]
Xu, Shaofu [5 ]
Xie, Weiqiang [2 ]
Zou, Weiwen [5 ]
Hu, Weiwei [1 ]
Bowers, John E. E. [2 ]
Wang, Xingjun [1 ,3 ,6 ]
机构
[1] Peking Univ, Sch Elect, State Key Lab Adv Opt Commun Syst & Networks, Beijing 100871, Peoples R China
[2] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[3] Peking Univ, Frontiers Sci Ctr Nanooptoelect, Beijing 100871, Peoples R China
[4] Zhangjiang Lab, Shanghai 201210, Peoples R China
[5] Shanghai Jiao Tong Univ, Dept Elect Engn, State Key Lab Adv Opt Commun Syst & Networks, Shanghai 200240, Peoples R China
[6] Peking Univ, Yangtze Delta Inst Optoelect, Nantong 226010, Peoples R China
关键词
D O I
10.1038/s41467-022-35506-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Optical neural networks face remarkable challenges in high-level integration and on-chip operation. In this work the authors enable optical convolution utilizing time-wavelength plane stretching approach on a microcomb-driven chip-based photonic processing unit. The emergence of parallel convolution-operation technology has substantially powered the complexity and functionality of optical neural networks (ONN) by harnessing the dimension of optical wavelength. However, this advanced architecture faces remarkable challenges in high-level integration and on-chip operation. In this work, convolution based on time-wavelength plane stretching approach is implemented on a microcomb-driven chip-based photonic processing unit (PPU). To support the operation of this processing unit, we develop a dedicated control and operation protocol, leading to a record high weight precision of 9 bits. Moreover, the compact architecture and high data loading speed enable a preeminent photonic-core compute density of over 1 trillion of operations per second per square millimeter (TOPS mm(-2)). Two proof-of-concept experiments are demonstrated, including image edge detection and handwritten digit recognition, showing comparable processing capability compared to that of a digital computer. Due to the advanced performance and the great scalability, this parallel photonic processing unit can potentially revolutionize sophisticated artificial intelligence tasks including autonomous driving, video action recognition and image reconstruction.
引用
收藏
页数:10
相关论文
共 47 条
[1]  
[Anonymous], MNIST DATABASE HANDW
[2]  
[Anonymous], 2012, Int. J. Comput. Sci., DOI DOI 10.13140/RG.2.1.5036.7123
[3]   An on-chip photonic deep neural network for image classification [J].
Ashtiani, Farshid ;
Geers, Alexander J. ;
Aflatouni, Firooz .
NATURE, 2022, 606 (7914) :501-+
[4]   Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip [J].
Atabaki, Amir H. ;
Moazeni, Sajjad ;
Pavanello, Fabio ;
Gevorgyan, Hayk ;
Notaros, Jelena ;
Alloatti, Luca ;
Wade, Mark T. ;
Sun, Chen ;
Kruger, Seth A. ;
Meng, Huaiyu ;
Al Qubaisi, Kenaish ;
Wang, Imbert ;
Zhang, Bohan ;
Khilo, Anatol ;
Baiocco, Christopher V. ;
Popovic, Milos A. ;
Stojanovic, Vladimir M. ;
Ram, Rajeev J. .
NATURE, 2018, 556 (7701) :349-+
[5]   Towards silicon photonic neural networks for artificial intelligence [J].
Bai, Bowen ;
Shu, Haowen ;
Wang, Xingjun ;
Zou, Weiwen .
SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (06)
[6]   Integrated optical frequency comb technologies [J].
Chang, Lin ;
Liu, Songtao ;
Bowers, John E. .
NATURE PHOTONICS, 2022, 16 (02) :95-108
[7]   Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators [J].
Chang, Lin ;
Xie, Weiqiang ;
Shu, Haowen ;
Yang, Qi-Fan ;
Shen, Boqiang ;
Boes, Andreas ;
Peters, Jon D. ;
Jin, Warren ;
Xiang, Chao ;
Liu, Songtao ;
Moille, Gregory ;
Yu, Su-Peng ;
Wang, Xingjun ;
Srinivasan, Kartik ;
Papp, Scott B. ;
Vahala, Kerry ;
Bowers, John E. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[8]   Silicon-Based MZI-Embedded Microring Array With Hitless and FSR-Alignment-Free Wavelength Selection [J].
Chen, Bei ;
Zhang, Zhaoyang ;
Ye, Li'ao ;
Dai, Tingge ;
Yu, Hui ;
Wang, Yuehai ;
Yang, Jianyi .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2022, 34 (08) :436-439
[9]   Heterogeneous Silicon/III-V Semiconductor Optical Amplifiers [J].
Davenport, Michael L. ;
Skendzic, Sandra ;
Volet, Nicolas ;
Hulme, Jared C. ;
Heck, Martijn J. R. ;
Bowers, John E. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2016, 22 (06) :78-88
[10]   Parallel convolutional processing using an integrated photonic tensor core [J].
Feldmann, J. ;
Youngblood, N. ;
Karpov, M. ;
Gehring, H. ;
Li, X. ;
Stappers, M. ;
Le Gallo, M. ;
Fu, X. ;
Lukashchuk, A. ;
Raja, A. S. ;
Liu, J. ;
Wright, C. D. ;
Sebastian, A. ;
Kippenberg, T. J. ;
Pernice, W. H. P. ;
Bhaskaran, H. .
NATURE, 2021, 589 (7840) :52-+