Infinitary Action Logic with Multiplexing

被引:3
作者
Kuznetsov, Stepan L. [1 ]
Speranski, Stanislav O. [1 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, 8 Gubkina St, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
Lambek calculus; Infinitary action logic; Multiplexing; Complexity; Closure ordinal;
D O I
10.1007/s11225-022-10021-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Infinitary action logic can be naturally expanded by adding exponential and subexponential modalities from linear logic. In this article we shall develop infinitary action logic with a subexponential that allows multiplexing (instead of contraction). Both non-commutative and commutative versions of this logic will be considered, presented as infinitary sequent calculi. We shall prove cut admissibility for these calculi, and estimate the complexity of the corresponding derivability problems: in both cases it will turn out to be between complete first-order arithmetic and the omega(omega) level of the hyperarithmetical hierarchy. Here the complexity upper bound is much lower than that for the system with a subexponential that allows contraction. The complexity lower bound in turn is much higher than that for infinitary action logic.
引用
收藏
页码:251 / 280
页数:30
相关论文
共 23 条
  • [1] Barwise J., 1977, STUDIES LOGIC FDN MA, V90, P739, DOI DOI 10.1016/S0049-237X
  • [2] Buchholz W., 1997, Computational Logic and Proof Theory. 5th Kurt Godel Colloquium, KGC'97. Proceedings, P4
  • [3] Buszkowski W., 2008, STUD LOGICA, V89, P1, DOI DOI 10.1007/S11225-008-9116-7
  • [4] Buszkowski W, 2007, J LOGIC COMPUT, V17, P199, DOI [10.1093/logcom/exl036, 10.1093/logcom/ex1036]
  • [5] LINEAR LOGIC
    GIRARD, JY
    [J]. THEORETICAL COMPUTER SCIENCE, 1987, 50 (01) : 1 - 102
  • [6] Light linear logic
    Girard, JY
    [J]. INFORMATION AND COMPUTATION, 1998, 143 (02) : 175 - 204
  • [7] Soft Subexponentials and Multiplexing
    Kanovich, Max
    Kuznetsov, Stepan
    Nigam, Vivek
    Scedrov, Andre
    [J]. AUTOMATED REASONING, PT I, 2020, 12166 : 500 - 517
  • [8] Subexponentials in non-commutative linear logic
    Kanovich, Max
    Kuznetsov, Stepan
    Nigam, Vivek
    Scedrov, Andre
    [J]. MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2019, 29 (08) : 1217 - 1249
  • [9] Kozen D., 1994, LOGIC INFORM FLOW, P78
  • [10] Commutative action logic
    Kuznetsov, Stepan L.
    [J]. JOURNAL OF LOGIC AND COMPUTATION, 2023, 33 (06) : 1437 - 1462