Fast and robust femur segmentation from computed tomography images for patient-specific hip fracture risk screening

被引:6
作者
Bjornsson, Pall Asgeir [1 ]
Baker, Alexander [2 ]
Fleps, Ingmar [2 ]
Pauchard, Yves [3 ]
Palsson, Halldor [4 ]
Ferguson, Stephen J. [2 ]
Sigurdsson, Sigurdur [5 ]
Gudnason, Vilmundur [5 ,6 ]
Helgason, Benedikt [2 ]
Ellingsen, Lotta Maria [1 ,7 ]
机构
[1] Univ Iceland, Dept Elect & Comp Engn, Dunhaga 5, IS-107 Reykjavik, Iceland
[2] Swiss Fed Inst Technol, Inst Biomech, Zurich, Switzerland
[3] Univ Calgary, McCaig Inst Bone & Joint Hlth, Calgary, AB, Canada
[4] Univ Iceland, Dept Ind Engn Mech Engn & Comp Sci, Reykjavik, Iceland
[5] Iceland Heart Assoc, Kopavogur, Iceland
[6] Univ Iceland, Dept Med, Reykjavik, Iceland
[7] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
关键词
Computed tomography; femur; segmentation; convolutional neural networks; osteoporosis; ASSOCIATION; WOMEN; AGE;
D O I
10.1080/21681163.2022.2068160
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Osteoporosis is a common bone disease that increases the risk of bone fracture. Hip-fracture risk screening methods based on finite element analysis depend on segmented computed tomography (CT) images; however, current femur segmentation methods require manual delineations of large data sets. Here we propose a deep neural network for fully automated, accurate, and fast segmentation of the proximal femur from CT. Evaluation on a set of 1147 proximal femurs with ground truth segmentations demonstrates that our method is apt for hip-fracture risk screening, bringing us one step closer to a clinically viable option for screening at-risk patients for hip-fracture susceptibility.
引用
收藏
页码:253 / 265
页数:13
相关论文
共 31 条
  • [1] Fully automatic segmentation of the Femur from 3D-CT images using primitive shape recognition and statistical shape models
    Ben Younes, Lassad
    Nakajima, Yoshikazu
    Saito, Toki
    [J]. INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2014, 9 (02) : 189 - 196
  • [2] Automated femur segmentation from computed tomography images using a deep neural network
    Bjornsson, P. A.
    Helgason, B.
    Palsson, H.
    Sigurdsson, S.
    Gudnason, V.
    Ellingsen, L. M.
    [J]. MEDICAL IMAGING 2021: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11600
  • [3] Accurate Pelvis and Femur Segmentation in Hip CT With a Novel Patch-Based Refinement
    Chang, Yong
    Yuan, Yongfeng
    Guo, Changyong
    Wang, Yadong
    Cheng, Yuanzhi
    Tamura, Shinichi
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (03) : 1192 - 1204
  • [4] Three-Dimensional Feature-Enhanced Network for Automatic Femur Segmentation
    Chen, Fang
    Liu, Jia
    Zhao, Zhe
    Zhu, Mingyu
    Liao, Hongen
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (01) : 243 - 252
  • [5] MASCG: Multi-Atlas Segmentation Constrained Graph method for accurate segmentation of hip CT images
    Chu, Chengwen
    Bai, Junjie
    Wu, Xiaodong
    Zheng, Guoyan
    [J]. MEDICAL IMAGE ANALYSIS, 2015, 26 (01) : 173 - 184
  • [6] MEASURES OF THE AMOUNT OF ECOLOGIC ASSOCIATION BETWEEN SPECIES
    DICE, LR
    [J]. ECOLOGY, 1945, 26 (03) : 297 - 302
  • [7] Biofidelic finite element models for accurately classifying hip fracture in a retrospective clinical study of elderly women from the AGES Reykjavik cohort
    Enns-Bray, W. S.
    Bahaloo, H.
    Fleps, I.
    Pauchard, Y.
    Taghizadeh, E.
    Sigurdsson, S.
    Aspelund, T.
    Buechler, P.
    Harris, T.
    Gudnason, V.
    Ferguson, S. J.
    Palsson, H.
    Helgason, B.
    [J]. BONE, 2019, 120 : 25 - 37
  • [8] Material mapping strategy to improve the predicted response of the proximal femur to a sideways fall impact
    Enns-Bray, W. S.
    Bahaloo, H.
    Fleps, I.
    Ariza, O.
    Gilchrist, S.
    Widmer, R.
    Guy, P.
    Palsson, H.
    Ferguson, S. J.
    Cripton, P. A.
    Helgason, B.
    [J]. JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2018, 78 : 196 - 205
  • [9] Fleps I., BONE
  • [10] Finite element derived femoral strength is a better predictor of hip fracture risk than aBMD in the AGES Reykjavik study cohort
    Fleps, Ingmar
    Palsson, Halldor
    Baker, Alexander
    Enns-Bray, William
    Bahaloo, Hassan
    Danner, Michael
    Singh, Navrag B.
    Taylor, William R.
    Sigurdsson, Sigurdur
    Gudnason, Vilmundur
    Ferguson, Stephen J.
    Helgason, Benedikt
    [J]. BONE, 2022, 154