Final value problem governed by a class of time-space fractional pseudo-parabolic equations with weak nonlinearities

被引:1
作者
Dinh Ke, Tran [1 ]
Bao Ngoc, Tran [2 ]
Huy Tuan, Nguyen [3 ,4 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math, Hanoi, Vietnam
[2] Karl Franzens Univ Graz, Inst Math & Sci Comp, Graz, Austria
[3] Van Lang Univ, Sci & Technol Adv Inst, Div Appl Math, Ho Chi Minh City, Vietnam
[4] Van Lang Univ, Fac Appl Technol, Sch Technol, Ho Chi Minh City, Vietnam
关键词
final value problem; fractional pseudo-parabolic equation; fractional Sobolev space; Hilbert scale; weak nonlinearity; well-posedness; GLOBAL EXISTENCE; BLOW-UP; MODEL;
D O I
10.1002/mma.9866
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the final value problem involving a class of semilinear fractional pseudo-parabolic equations, where the nonlinearity probably takes values in fractional Sobolev spaces. By establishing some estimates for resolvent operators and employing the embedding related to Hilbert scales and fractional Sobolev spaces, we are able to obtain the existence and uniqueness result to the mentioned problem. In addition, the behavior of solutions at initial time is analyzed with respect to the final data. It will be shown that various cases of the nonlinearity functions meet our setting, including functions with gradient term.
引用
收藏
页码:5307 / 5328
页数:22
相关论文
共 46 条
[1]  
[Anonymous], 2006, Electron. J. Differ. Equ
[2]   Existence of weak solutions for a nonlocal pseudo-parabolic model for Brinkman two-phase flow in asymptotically flat porous media [J].
Armiti-Juber, Alaa ;
Rohde, Christian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 477 (01) :592-612
[3]  
Barenblatt G I., 1960, Journal of Applied Mathematics and Mechanics, V24, P1286, DOI [DOI 10.1016/0021-8928(60)90107-6, 10.1016/0021-8928(60)90107-6]
[4]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[5]  
Bhattacharyya P.K., 2012, Distributions: generalized functions with applications in Sobolev spaces. de Gruyter
[6]   A semilinear pseudo-parabolic equation with initial data non-rarefied at ∞ [J].
Cao, Yang ;
Wang, Zhiyong ;
Yin, Jingxue .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (10) :3737-3756
[7]   GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS FOR INFINITELY DEGENERATE SEMILINEAR PSEUDO-PARABOLIC EQUATIONS WITH LOGARITHMIC NONLINEARITY [J].
Chen, Hua ;
Xu, Huiyang .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (02) :1185-1203
[8]   ON A THEORY OF HEAT CONDUCTION INVOLVING 2 TEMPERATURES [J].
CHEN, PJ .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1968, 19 (04) :614-&
[9]  
Coleman B., 1960, ARCH RATION MECH AN, V6, P355, DOI DOI 10.1007/BF00276168
[10]  
Nghia BD, 2023, Electronic Journal of Applied Mathematics, V1, P62, DOI [10.61383/ejam.20231129, DOI 10.61383/EJAM.20231129]