The velocity diagram for traveling waves

被引:2
作者
Al Haj, Mohammad [1 ]
Monneau, Regis [2 ,3 ]
机构
[1] Lebanese Univ, Fac Sci, Sect 5, Nabatiye 1700, Lebanon
[2] Univ Paris Est, Ecole Ponts ParisTech, CERMICS, 6 & 8 Ave Blaise Pascal,Champs Sur Marne, F-77455 Marne La Vallee 2, France
[3] Univ Paris 09, CEREMADE, Pl Marechal De Lattre Tassigny, F-75775 Paris 16, France
关键词
D O I
10.5802/crmath.433
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note, we consider traveling waves in a reaction-diffusion equation in dimension one. Motivated by the motion of dislocations in crystals, we introduce an additive parameter sigma in the reaction term, which may be interpreted as an exterior force applied on the crystal. Under certain natural assumptions and for every value of sigma is an element of [sigma(-), sigma(+)], we show the existence of traveling waves phi of velocity c. The range sigma is an element of (sigma(-), sigma(+)) corresponds to bistable cases with a unique velocity c = c(sigma). On the contrary, the case sigma = sigma(+) is positively monostable with a branch of velocities c >= c(+), while the case sigma = sigma(-) is negatively monostable with a branch of velocities c <= c(-). This study gives rise to a natural connection between bistable cases and monostable cases in a single velocity diagram. We also give some qualitative properties of the velocity function sigma (sic) c(sigma).
引用
收藏
页码:777 / 782
页数:6
相关论文
共 9 条
[1]   Existence and Uniqueness of Traveling Waves for Fully Overdamped Frenkel-Kontorova Models [J].
Al Haj, M. ;
Forcadel, N. ;
Monneau, R. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 210 (01) :45-99
[2]  
Al Haj M, 2022, The velocity diagram of traveling waves for discrete reaction-diffusion equations
[3]  
[Anonymous], 1991, Bol. Soc. Brasil. Mat. (N.S.), DOI DOI 10.1007/BF01244896
[4]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[5]   TRAVELING WAVE SOLUTIONS TO COMBUSTION MODELS AND THEIR SINGULAR LIMITS [J].
BERESTYCKI, H ;
NICOLAENKO, B ;
SCHEURER, B .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1985, 16 (06) :1207-1242
[6]  
Fife P.C, 1988, DYNAMICS INTERNAL LA
[7]   The wave of advance of advantageous genes [J].
Fisher, RA .
ANNALS OF EUGENICS, 1937, 7 :355-369
[8]   Homogenization of fully overdamped Frenkel-Kontorova models [J].
Forcadel, N. ;
Imbert, C. ;
Monneau, R. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (03) :1057-1097
[9]  
Kolmogorov A N., 1937, Bulletin Universit d'Etat Moscou, Bjul Moskowskogo Gos Univ, V1, P1