Logarithmic nature of the long-time asymptotics of solutions of a Sobolev-type nonlinear equations with cubic nonlinearities

被引:0
作者
Naumkin, P., I [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Ctr Math Sci, Mexico City, DF, Mexico
关键词
nonlinear Sobolev-type equation; critical nonlinearity; factorization technique; CAUCHY-PROBLEM;
D O I
10.4213/sm9515e
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Cauchy problem of the form {i partial derivative(t)(u - partial derivative(2)(x) u) + partial derivative(2)(x)u - a partial derivative(4)(x) u = u(3), t > 0, x is an element of R, u(0, x) = u(0)(x), x is an element of R, is considered for a Sobolev-type nonlinear equation with cubic nonlinearity, where a > 1/5, a not equal 1. It is shown that the asymptotic behaviour of the solution is characterized by an additional logarithmic decay in comparison with the corresponding linear case. To find the asymptotics of solutions of the Cauchy problem for a nonlinear Sobolev-type equation, factorization technique is developed. To obtain estimates for derivatives of the defect operators, L-2-estimates of pseudodifferential operators are used. Bibliography: 20 titles.
引用
收藏
页码:1024 / 1050
页数:27
相关论文
共 20 条
[1]  
[Anonymous], 2011, De Gruyter Ser. Nonlinear Anal. Appl.
[2]   CLASS OF BOUNDED PSEUDODIFFERENTIAL OPERATORS [J].
CALDERON, AP ;
VAILLANCOURT, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1972, 69 (05) :1185-+
[3]  
Cazenave T., 2003, Courant Lecture Notes in Mathematics, V10
[4]  
COIFMAN R R, 1978, DELA OPERATEURS PSEU, P57
[5]   COMPACTNESS OF COMMUTATORS OF MULTIPLICATIONS AND CONVOLUTIONS, AND BOUNDEDNESS OF PSEUDODIFFERENTIAL OPERATORS [J].
CORDES, HO .
JOURNAL OF FUNCTIONAL ANALYSIS, 1975, 18 (02) :115-131
[6]  
Fedoryuk M.V., 1987, Asymptotics: Integrals and Series
[7]  
HAYASHI N, 1988, ANN I H POINCARE-PHY, V48, P17
[8]  
Hayashi N., 2016, SUT J MATH, V52, P49
[9]  
Hayashi N., 2012, Pac. J. Appl. Math. Yearbook, V1, P1
[10]   The initial value problem for the cubic nonlinear Klein-Gordon equation [J].
Hayashi, Nakao ;
Naumkin, Pavel I. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2008, 59 (06) :1002-1028