NONLINEARITY PARAMETER IMAGING IN THE FREQUENCY DOMAIN

被引:6
|
作者
Kaltenbacher, Barbara [1 ]
Rundell, William [1 ,2 ]
机构
[1] Alpen Adria Univ Klagenfurt, Dept Math, Klagenfurt, Austria
[2] Texas A&M Univ, Dept Math, College Stn, TX USA
基金
奥地利科学基金会; 美国国家科学基金会;
关键词
Nonlinearity parameter tomography; multiharmonic expansion; West-ervelt equation; Helmholtz equation; extended sources; point sources; Newton's method; range invariance condition; TOMOGRAPHY; B/A; RECONSTRUCTION; IDENTIFICATION;
D O I
10.3934/ipi.2023037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonlinearity parameter tomography leads to the problem of identifying a coefficient in a nonlinear wave equation (such as the Westervelt equation) modeling ultrasound propagation. In this paper we transfer this into frequency domain, where the Westervelt equation gets replaced by a coupled system of Helmholtz equations with quadratic nonlinearities. For the case of the to-be-determined nonlinearity coefficient being a characteristic function of an unknown, not necessarily connected domain D, we devise and test a reconstruction algorithm based on weighted point source approximations combined with Newton's method. In a more abstract setting, convergence of a regularised Newton type method for this inverse problem is proven by verifying a range invariance condition of the forward operator and establishing injectivity of its linearisation.
引用
收藏
页码:388 / 405
页数:18
相关论文
共 50 条
  • [1] REFLECTION IMAGING OF NONLINEARITY PARAMETER DISTRIBUTION
    AKIYAMA, I
    KOIDE, T
    KUMAKURA, Y
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1991, 30 : 221 - 223
  • [2] Simultaneous Reconstruction of Speed of Sound and Nonlinearity Parameter in a Paraxial Model of Vibro-Acoustography in Frequency Domain
    Kaltenbacher, Barbara
    Rauscher, Teresa
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2024, 24 (02) : 413 - 430
  • [3] DETECTOR NONLINEARITY IN FREQUENCY-DOMAIN FLUOROMETRY
    WIRTH, MJ
    BURBAGE, JD
    ZULLI, SL
    APPLIED OPTICS, 1993, 32 (06) : 976 - 980
  • [4] A frequency domain nonlinearity for stereo echo cancellation
    Wu, M
    Lin, ZB
    Qin, XJ
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2005, E88A (07) : 1757 - 1759
  • [5] NONLINEARITY PARAMETER, NONLINEARITY CONSTANT, AND FREQUENCY-DEPENDENCE OF ULTRASONIC-ATTENUATION IN GAAS
    JOHARAPURKAR, DN
    BREAZEALE, MA
    JOURNAL OF APPLIED PHYSICS, 1990, 67 (01) : 76 - 80
  • [6] Frequency Domain Analysis of Exponential-type Nonlinearity
    Xiao, Zhenlong
    Jing, Xingjian
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 7466 - 7471
  • [7] A GENERALIZED FREQUENCY-DOMAIN NONLINEARITY MEASUREMENT METHOD
    CHE, XD
    PEEK, MJ
    FITZPATRICK, J
    IEEE TRANSACTIONS ON MAGNETICS, 1994, 30 (06) : 4236 - 4238
  • [8] A frequency domain method for the measurement of nonlinearity in heterodyne interferometry
    Badami, VG
    Patterson, SR
    PRECISION ENGINEERING-JOURNAL OF THE AMERICAN SOCIETY FOR PRECISION ENGINEERING, 2000, 24 (01): : 41 - 49
  • [9] Quantitative analysis of a frequency-domain nonlinearity indicator
    Reichman, Brent O.
    Gee, Kent L.
    Neilsen, Tracianne B.
    Miller, Kyle G.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2016, 139 (05): : 2505 - 2513
  • [10] Ultrasound nonlinearity parameter assessment using plane wave imaging
    Byra, Michal
    Wojcik, Janusz
    Nowicki, Andrzej
    2017 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2017,