Artificial intelligence and digital pathology: clinical promise and deployment considerations

被引:8
作者
Zarella, Mark D. [1 ]
Mcclintock, David S. [1 ]
Batra, Harsh [2 ]
Gullapalli, Rama R. [3 ,4 ]
Valante, Michael [5 ]
Tan, Vivian O. [6 ]
Dayal, Shubham [7 ]
Oh, Kei Shing [8 ]
Lara, Haydee [9 ]
Garcia, Chris A. [1 ]
Abels, Esther [10 ]
机构
[1] Mayo Clin, Dept Lab Med & Pathol, Div Computat Pathol & AI, Rochester, MN 55905 USA
[2] Univ Texas MD Anderson Canc Ctr, Dept Translat Mol Pathol, Houston, TX USA
[3] Univ New Mexico, Dept Pathol, Albuquerque, NM USA
[4] Univ New Mexico, Chem & Biol Engn, Albuquerque, NM USA
[5] Dell Technol, Unstruct Data Solut, Hopkinton, MA USA
[6] Lecia Biosyst Med & Sci Affairs, Vista, CA USA
[7] Leica Biosyst Med & Sci Affairs, Vista, CA USA
[8] Mt Sinai Med Ctr, Miami Beach, FL USA
[9] Alexion AstraZeneca Rare Dis Unit, Biomarker Dev, New Haven, CT USA
[10] SolarisRTC LLC, Boston, MA USA
关键词
digital pathology; computational pathology; image analysis; whole-slide imaging; machine learning; DIAGNOSIS; UTILITY;
D O I
10.1117/1.JMI.10.5.051802
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) presents an opportunity in anatomic pathology to provide quantitative objective support to a traditionally subjective discipline, thereby enhancing clinical workflows and enriching diagnostic capabilities. AI requires access to digitized pathology materials, which, at present, are most commonly generated from the glass slide using whole-slide imaging. Models are developed collaboratively or sourced externally, and best practices suggest validation with internal datasets most closely resembling the data expected in practice. Although an array of AI models that provide operational support for pathology practices or improve diagnostic quality and capabilities has been described, most of them can be categorized into one or more discrete types. However, their function in the pathology workflow can vary, as a single algorithm may be appropriate for screening and triage, diagnostic assistance, virtual second opinion, or other uses depending on how it is implemented and validated. Despite the clinical promise of AI, the barriers to adoption have been numerous, to which inclusion of new stakeholders and expansion of reimbursement opportunities may be among the most impactful solutions. (c) 2023 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:12
相关论文
共 38 条
  • [1] Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the Digital Pathology Association
    Abels, Esther
    Pantanowitz, Liron
    Aeffner, Famke
    Zarella, Mark D.
    van der Laak, Jeroen
    Bui, Marilyn M.
    Vemuri, Venkata N. P.
    Parwani, Anil V.
    Gibbs, Jeff
    Agosto-Arroyo, Emmanuel
    Beck, Andrew H.
    Kozlowski, Cleopatra
    [J]. JOURNAL OF PATHOLOGY, 2019, 249 (03) : 286 - 294
  • [2] Aeffner Famke, 2019, J Pathol Inform, V10, P9, DOI 10.4103/jpi.jpi_82_18
  • [3] American Medical Association, 2022, CPT® editorial summary of panel actions May 2022
  • [4] [Anonymous], 2011, Clinical Laboratory Improvement Amendments
  • [5] Digital Whole Slide Imaging Compared With Light Microscopy for Primary Diagnosis in Surgical Pathology A Multicenter, Double-Blinded, Randomized Study of 2045 Cases
    Borowsky, Alexander D.
    Glassy, Eric F.
    Wallace, William Dean
    Kallichanda, Nathash S.
    Behling, Cynthia A.
    Miller, Dylan, V
    Oswal, Hemlata N.
    Feddersen, Richard M.
    Bakhtar, Omid R.
    Mendoza, Arturo E.
    Molden, Daniel P.
    Saffer, Helene L.
    Wixom, Christopher R.
    Albro, James E.
    Cessna, Melissa H.
    Hall, Brian J.
    Lloyd, Isaac E.
    Bishop, John W.
    Darrow, Morgan A.
    Gui, Dorina
    Jen, Kuang-Yu
    Walby, Julie Ann S.
    Bauer, Stephen M.
    Cortez, Daniel A.
    Gandhi, Pranav
    Rodgers, Melissa M.
    Rodriguez, Rafael A.
    Martin, David R.
    McConnell, Thomas G.
    Reynolds, Samuel J.
    Spigel, James H.
    Stepenaskie, Shelly A.
    Viktorova, Elena
    Magari, Robert
    Wharton, Keith A., Jr.
    Qiu, Jinsong
    Bauer, Thomas W.
    [J]. ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2020, 144 (10) : 1245 - 1253
  • [6] Bychkov A ..., 2022, Modern Pathol: Official J US Canadian Acad Pathol, V102, P1361, DOI [10.1038/s41379-022-01050-6, DOI 10.1038/S41379-022-01050-6]
  • [7] Cheng J. Y., 2023, Artificial Intelligence in Pathology: Principles and Applications
  • [8] Challenges in the Development, Deployment, and Regulation of Artificial Intelligence in Anatomic Pathology
    Cheng, Jerome Y.
    Abel, Jacob T.
    Balis, Ulysses G. J.
    McClintock, David S.
    Pantanowitz, Liron
    [J]. AMERICAN JOURNAL OF PATHOLOGY, 2021, 191 (10) : 1684 - 1692
  • [9] Artificial Intelligence and Digital Microscopy Applications in Diagnostic Hematopathology
    El Achi, Hanadi
    Khoury, Joseph D.
    [J]. CANCERS, 2020, 12 (04)
  • [10] Light-sheet microscopy for slide-free non-destructive pathology of large clinical specimens
    Glaser, Adam K.
    Reder, Nicholas P.
    Chen, Ye
    McCarty, Erin F.
    Yin, Chengbo
    Wei, Linpeng
    Wang, Yu
    True, Lawrence D.
    Liu, Jonathan T. C.
    [J]. NATURE BIOMEDICAL ENGINEERING, 2017, 1 (07):