TRACKING INTERMITTENT PARTICLES WITH SELF-LEARNED VISUAL FEATURES

被引:2
作者
Reme, Raphael [1 ,2 ]
Piriou, Victor [1 ]
Hanson, Alison [3 ]
Yuste, Rafael [3 ]
Newson, Alasdair [2 ]
Angelini, Elsa [2 ]
Olivo-Marin, Jean-Christophe [1 ]
Lagache, Thibault [1 ]
机构
[1] Univ Paris, CNRS, Inst Pasteur, BioImage Anal Unit,UMR 3691, F-75015 Paris, France
[2] Inst Polytech Paris, LTCI, Telecom Paris, Paris, France
[3] Columbia Univ, Dept Biol Sci, New York, NY USA
来源
2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI | 2023年
关键词
Single Particle Tracking; Optimization; Deep Learning; Self-supervised Learning; MICROSCOPY;
D O I
10.1109/ISBI53787.2023.10230664
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In time-lapse fluorescence imaging, single-particle-tracking is a powerful tool to monitor the dynamics of objects of interest, and extract information about biological processes. However, tracked particles can be subject to occlusion and intermittent detectability. When these phenomena persist over a few frames, tracking algorithms tend to produce multiple tracklets for the same particle. In this work, we introduce self-supervised learning of visual features to compare tracked particles, and we exploit both visual and positional distances to robustly stitch tracklets representing the same particle. We demonstrate the performance of our stitching framework on time-lapse fluorescence sequences of Hydra Vulgaris neurons. Results show high stitching precision, and reduction of errors made by previous algorithms on the same data by a factor of two.
引用
收藏
页数:5
相关论文
共 20 条
[11]  
Loshchilov I., 2019, INT C LEARNING REPRE, DOI DOI 10.48550/ARXIV.1711.05101
[12]   Extraction of spots in biological images using multiscale products [J].
Olivo-Marin, JC .
PATTERN RECOGNITION, 2002, 35 (09) :1989-1996
[13]   YOLO9000: Better, Faster, Stronger [J].
Redmon, Joseph ;
Farhadi, Ali .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6517-6525
[14]   Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks [J].
Ren, Shaoqing ;
He, Kaiming ;
Girshick, Ross ;
Sun, Jian .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (06) :1137-1149
[15]   Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) [J].
Rust, Michael J. ;
Bates, Mark ;
Zhuang, Xiaowei .
NATURE METHODS, 2006, 3 (10) :793-795
[16]   Feature point tracking and trajectory analysis for video imaging in cell biology [J].
Sbalzarini, IF ;
Koumoutsakos, P .
JOURNAL OF STRUCTURAL BIOLOGY, 2005, 151 (02) :182-195
[17]   Cell Detection with Star-Convex Polygons [J].
Schmidt, Uwe ;
Weigert, Martin ;
Broaddus, Coleman ;
Myers, Gene .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT II, 2018, 11071 :265-273
[18]   Quantitative Comparison of Spot Detection Methods in Fluorescence Microscopy [J].
Smal, Ihor ;
Loog, Marco ;
Niessen, Wiro ;
Meijering, Erik .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (02) :282-301
[19]   Detecting action potentials in neuronal populations with calcium imaging [J].
Smetters, D ;
Majewska, A ;
Yuste, R .
METHODS-A COMPANION TO METHODS IN ENZYMOLOGY, 1999, 18 (02) :215-221
[20]   Learning Fine-grained Image Similarity with Deep Ranking [J].
Wang, Jiang ;
Song, Yang ;
Leung, Thomas ;
Rosenberg, Chuck ;
Wang, Jingbin ;
Philbin, James ;
Chen, Bo ;
Wu, Ying .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :1386-1393