TRACKING INTERMITTENT PARTICLES WITH SELF-LEARNED VISUAL FEATURES

被引:2
作者
Reme, Raphael [1 ,2 ]
Piriou, Victor [1 ]
Hanson, Alison [3 ]
Yuste, Rafael [3 ]
Newson, Alasdair [2 ]
Angelini, Elsa [2 ]
Olivo-Marin, Jean-Christophe [1 ]
Lagache, Thibault [1 ]
机构
[1] Univ Paris, CNRS, Inst Pasteur, BioImage Anal Unit,UMR 3691, F-75015 Paris, France
[2] Inst Polytech Paris, LTCI, Telecom Paris, Paris, France
[3] Columbia Univ, Dept Biol Sci, New York, NY USA
来源
2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI | 2023年
关键词
Single Particle Tracking; Optimization; Deep Learning; Self-supervised Learning; MICROSCOPY;
D O I
10.1109/ISBI53787.2023.10230664
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In time-lapse fluorescence imaging, single-particle-tracking is a powerful tool to monitor the dynamics of objects of interest, and extract information about biological processes. However, tracked particles can be subject to occlusion and intermittent detectability. When these phenomena persist over a few frames, tracking algorithms tend to produce multiple tracklets for the same particle. In this work, we introduce self-supervised learning of visual features to compare tracked particles, and we exploit both visual and positional distances to robustly stitch tracklets representing the same particle. We demonstrate the performance of our stitching framework on time-lapse fluorescence sequences of Hydra Vulgaris neurons. Results show high stitching precision, and reduction of errors made by previous algorithms on the same data by a factor of two.
引用
收藏
页数:5
相关论文
共 20 条
[1]   Single quantum dot tracking based on perceptual grouping using minimal paths in a spatiotemporal volume [J].
Bonneau, S ;
Dahan, M ;
Cohen, LD .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (09) :1384-1395
[2]  
Chenouard N., 2008, MICCAI WORKSH MIAAB
[3]   Multiple Hypothesis Tracking for Cluttered Biological Image Sequences [J].
Chenouard, Nicolas ;
Bloch, Isabelle ;
Olivo-Marin, Jean-Christophe .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (11) :2736-2750
[4]   FEATURE-AIDED PARTICLE TRACKING [J].
Chenouard, Nicolas ;
Bloch, Isabelle ;
Olivo-Marin, Jean-Christophe .
2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, :1796-1799
[5]  
de Chaumont F, 2012, NAT METHODS, V9, P690, DOI [10.1038/NMETH.2075, 10.1038/nmeth.2075]
[6]   Multiple particle tracking in 3-D+t microscopy: Method and application to the tracking of endocytosed quantum dots [J].
Genovesio, A ;
Liedl, T ;
Emiliani, V ;
Parak, WJ ;
Coppey-Moisan, M ;
Olivo-Marin, JC .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (05) :1062-1070
[7]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[8]   Robust single-particle tracking in live-cell time-lapse sequences [J].
Jaqaman, Khuloud ;
Loerke, Dinah ;
Mettlen, Marcel ;
Kuwata, Hirotaka ;
Grinstein, Sergio ;
Schmid, Sandra L. ;
Danuser, Gaudenz .
NATURE METHODS, 2008, 5 (08) :695-702
[9]   A SHORTEST AUGMENTING PATH ALGORITHM FOR DENSE AND SPARSE LINEAR ASSIGNMENT PROBLEMS [J].
JONKER, R ;
VOLGENANT, A .
COMPUTING, 1987, 38 (04) :325-340
[10]   Tracking calcium dynamics from individual neurons in behaving animals [J].
Lagache, Thibault ;
Hanson, Alison ;
Perez-Ortega, Jesus E. ;
Fairhall, Adrienne ;
Yuste, Rafael .
PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (10)