The effect of Y, Er co-doped on the sintering and electrical properties of Mo0.05Bi1.95O3 electrolyte materials for solid oxide fuel cells

被引:3
作者
Qian, Weixing [1 ]
Liang, Hao [1 ]
Zhu, Xuhang [1 ]
Cheng, Jihai [1 ]
机构
[1] Hefei Univ, Sch Energy Mat & Chem Engn, Hefei 230022, Peoples R China
关键词
Solid oxide fuel cells; electrolyte; bismuth oxide; electrical properties; PHASE-FORMATION; CONDUCTIVITY; TEMPERATURE; POLYMORPHISM;
D O I
10.1142/S1793604723510074
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Bismuth oxide-based electrolyte materials co-doped with yttrium and erbium were synthesized by nitrate combustion method. The crystal structure was analyzed by X-ray diffraction. The data on electrical conductivity were carried out using AC impedance spectroscopy. The results suggested that all of the co-doped bismuth oxide samples obtained d-phase with cubic fluorite structure. The conductivity of (YO1.5)(0.2)(MoO3)(0.05)(ErO1.5)(0.05)(BiO1.5)(0.7)ceramic electrolyte sintered at 925? for 10 h reached 12.26 x 10(-2) S cm-1 at 700?. It has good thermal stability and is a promising electrolyte material for SOFC.
引用
收藏
页数:6
相关论文
共 32 条
  • [1] BISMUTH OXIDE-BASED SOLID ELECTROLYTES FOR FUEL-CELLS
    AZAD, AM
    LAROSE, S
    AKBAR, SA
    [J]. JOURNAL OF MATERIALS SCIENCE, 1994, 29 (16) : 4135 - 4151
  • [2] The microstructure and thermo-electrical characterization of the Tb-Gd-Ho co-doped stabilized Bi2O3 based solid electrolyte systems
    Balci, Murat
    Cengel, Atakan
    Ari, Mehmet
    [J]. CHINESE JOURNAL OF PHYSICS, 2022, 79 : 89 - 97
  • [3] Stability of tungsten-doped δ-Bi3YO6
    Borowska-Centkowska, A.
    Leszczynska, M.
    Wrobel, W.
    Malys, M.
    Hull, S.
    Krok, F.
    Abrahams, I.
    [J]. SOLID STATE IONICS, 2020, 345 (345)
  • [4] Structure and conductivity in tungsten doped δ-Bi3YO6
    Borowska-Centkowska, A.
    Leszczynska, M.
    Wrobel, W.
    Malys, M.
    Krynski, M.
    Hull, S.
    Krok, F.
    Abrahams, I.
    [J]. SOLID STATE IONICS, 2017, 308 : 61 - 67
  • [5] Effect of oxygen sublattice ordering on interstitial transport mechanism and conductivity activation energies in phase-stabilized cubic bismuth oxides
    Boyapati, S
    Wachsman, ED
    Jiang, NX
    [J]. SOLID STATE IONICS, 2001, 140 (1-2) : 149 - 160
  • [6] High ionic conductivity dysprosium and tantalum Co-doped bismuth oxide electrolyte for low-temperature SOFCs
    Cardenas-Terrazas, P. S.
    Ayala-Ayala, M. T.
    Munoz-Saldana, J.
    Fuentes, A. F.
    Leal-Chavez, D. A.
    Ledezma-Sillas, J. E.
    Carreno-Gallardo, C.
    Herrera-Ramirez, J. M.
    [J]. IONICS, 2020, 26 (09) : 4579 - 4586
  • [7] A strategy for improving sinterability and electrical properties of gadolinium-doped ceria electrolyte using calcium oxide additive
    Cheng, Jihai
    Xu, Ronghao
    Shi, Yinchao
    [J]. JOURNAL OF RARE EARTHS, 2021, 39 (06) : 728 - 733
  • [8] A new electrolyte based on Tm3+-doped δ-Bi2O3-type phase with enhanced conductivity
    Dapcevic, A.
    Poleti, D.
    Rogan, J.
    Radojkovic, A.
    Radovic, M.
    Brankovic, G.
    [J]. SOLID STATE IONICS, 2015, 280 : 18 - 23
  • [9] Structures and oxide mobility in Bi-Ln-O materials:: Heritage of Bi2O3
    Drache, Michel
    Roussel, Pascal
    Wignacourt, Jean-Pierre
    [J]. CHEMICAL REVIEWS, 2007, 107 (01) : 80 - 96
  • [10] Study of crystallographic, thermal and electrical properties of (Bi2O3)1-x-y(Tb4O7)x(Gd2O3)y electrolyte for SOFC application
    Ermis, Ismail
    Shaikh, S. P. S.
    [J]. CERAMICS INTERNATIONAL, 2018, 44 (15) : 18776 - 18782