Estimates for the Fourier coefficients of the Duke-Imamoglu-Ikeda lift

被引:0
作者
Ikeda, Tamotsu [3 ]
Katsurada, Hidenori [1 ,2 ]
机构
[1] Hokkaido Univ, Dept Math, Kita 10,Nishi 8,Kita Ku, Sapporo 0600810, Japan
[2] Muroran Inst Technol, 27-1 Mizumoto, Muroran, Hokkaido 0508585, Japan
[3] Kyoto Univ, Grad Sch Math, Kitashirakawa, Kyoto 6068502, Japan
关键词
Fourier coefficient; Duke-Imamoglu-Ikeda lift; Siegel series; SIEGEL CUSP FORMS; QUADRATIC FORM; MODULAR-FORMS;
D O I
10.1515/forum-2022-0197
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let k and n be positive even integers. For a Hecke eigenform h in the Kohnen plus subspace of weight k -n/2 + 1/2 for G(0)(4), let I-n(h) be the Duke-Imamoglu-Ikeda lift of h to the space of cusp forms of weight k for Sp(n)(Z). We then give an estimate of the Fourier coefficients of I-n(h). It is better than the usual Hecke bound for the Fourier coefficients of a Siegel cusp form.
引用
收藏
页码:975 / 990
页数:16
相关论文
共 20 条
[1]   ESTIMATES FOR FOURIER COEFFICIENTS OF SIEGEL CUSP FORMS [J].
BOCHERER, S ;
KOHNEN, W .
MATHEMATISCHE ANNALEN, 1993, 297 (03) :499-517
[2]  
BOCHERER S, 1988, J REINE ANGEW MATH, V384, P80
[3]  
Breulmann S., 1996, THESIS U HEIDELBERG
[5]   The cubic moment of central values of automorphic L-functions [J].
Conrey, JB ;
Iwaniec, H .
ANNALS OF MATHEMATICS, 2000, 151 (03) :1175-1216
[6]  
Deligne P., 1974, I. Publ. Math. IHS, V43, P273, DOI DOI 10.1007/BF02684373
[7]  
Fomenko O. M., 1987, J SOVIET MATH, V38, P2148
[8]   On the lifting of elliptic cusp forms to Siegel cusp forms of degree 2n [J].
Ikeda, T .
ANNALS OF MATHEMATICS, 2001, 154 (03) :641-681
[9]   An explicit formula for the Siegel series of a quadratic form over a non-archimedean local field [J].
Ikeda, Tamotsu ;
Katsurada, Hidenori .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (783) :1-47
[10]   ON THE LIFTING OF HILBERT CUSP FORMS TO HILBERT-SIEGEL CUSP FORMS [J].
Ikeda, Tamotsu ;
Yamana, Shunsuke .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2020, 53 (05) :1121-1181