Detection and classification of darknet traffic using machine learning methods

被引:3
|
作者
Ugurlu, Mesut [1 ]
Dogru, Ibrahim Alper [2 ]
Arslan, Recep Sinan [3 ]
机构
[1] Gazi Univ, Grad Sch Nat & Appl Sci, Dept Informat Secur Engn, TR-06570 Ankara, Turkiye
[2] Gazi Univ, Fac Technol, Dept Comp Engn, TR-06570 Ankara, Turkiye
[3] Kayseri Univ, Fac Engn, Dept Comp Engn, TR-38039 Kayseri, Turkiye
来源
JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY | 2023年 / 38卷 / 03期
关键词
Darknet; Cyber security; Encrypted network traffic; Machine learning; Classification; FEATURE-SELECTION;
D O I
10.17341/gazimmfd.1023147
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Graphical/Tabular In this study, a machine learning-based model has been developed for the detection and classification of the darknet or dark web that cybercriminals and attackers use to hide their identity information and provide encrypted communication. The statistical information of packets was analyzed using machine learning approach without deciphering encrypted network traffic. Feature selection was made to increase the performance of the model. In addition to this process, data balancing was performed in order to increase the detection and classification rate of features with low numbers during the training phase. The created model is given in Figure A.
引用
收藏
页码:1737 / 1746
页数:10
相关论文
共 50 条
  • [1] Darknet Traffic Classification using Machine Learning Techniques
    Iliadis, Lazaros Alexios
    Kaifas, Theodoros
    2021 10TH INTERNATIONAL CONFERENCE ON MODERN CIRCUITS AND SYSTEMS TECHNOLOGIES (MOCAST), 2021,
  • [2] Darknet traffic classification and adversarial attacks using machine learning
    Rust-Nguyen, Nhien
    Sharma, Shruti
    Stamp, Mark
    COMPUTERS & SECURITY, 2023, 127
  • [3] Machine-Learning-Based Darknet Traffic Detection System for IoT Applications
    Abu Al-Haija, Qasem
    Krichen, Moez
    Abu Elhaija, Wejdan
    ELECTRONICS, 2022, 11 (04)
  • [4] Active-Darknet: An Iterative Learning Approach for Darknet Traffic Detection and Categorization
    Abbas, Sidra
    Bouazzi, Imen
    Sampedro, Gabriel Avelino
    Alsubai, Shtwai
    Almadhor, Ahmad S.
    Al Hejaili, Abdullah
    Kryvinska, Natalia
    IEEE ACCESS, 2024, 12 : 151987 - 151997
  • [5] Ransomware Detection and Classification Using Machine Learning and Deep Learning
    Ouerdi, Noura
    Mejjout, Brahim
    Laaroussi, Khadija
    Kasmi, Mohammed Amine
    ADVANCES IN SMART MEDICAL, IOT & ARTIFICIAL INTELLIGENCE, VOL 1, ICSMAI 2024, 2024, 11 : 194 - 201
  • [6] Deep Neural Classification of Darknet Traffic
    Alimoradi, Mahmoud
    Zabihimayvan, Mahdieh
    Daliri, Arman
    Sledzik, Ryan
    Sadeghi, Reza
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2022, 356 : 105 - 114
  • [7] Data mining and machine learning methods for sustainable smart cities traffic classification: A survey
    Shafiq, Survey Muhammad
    Tian, Zhihong
    Bashir, Ali Kashif
    Jolfaei, Alireza
    Yu, Xiangzhan
    SUSTAINABLE CITIES AND SOCIETY, 2020, 60
  • [8] Internet traffic classification using machine learning
    Jun, Li
    Shunyi, Zhang
    Yanqing, Lu
    Zailong, Zhang
    2007 SECOND INTERNATIONAL CONFERENCE IN COMMUNICATIONS AND NETWORKING IN CHINA, VOLS 1 AND 2, 2007, : 68 - 72
  • [9] Internet traffic classification using machine learning
    Singh M.P.
    Srivastava G.
    Kumar P.
    International Journal of Database Theory and Application, 2016, 9 (12): : 45 - 54
  • [10] A Darknet Traffic Analysis for IoT Malwares Using Association Rule Learning
    Hashimoto, Naoki
    Ozawa, Seiichi
    Ban, Tao
    Nakazato, Junji
    Shimamura, Jumpei
    INNS CONFERENCE ON BIG DATA AND DEEP LEARNING, 2018, 144 : 118 - 123