Inertial iterative method for a generalized mixed equilibrium, variational inequality and a fixed point problems for a family of quasi-?-nonexpansive mappings

被引:4
作者
Farid, Mohammad [1 ]
Ali, Rehan [2 ]
Kazmi, Kaleem Raza [3 ]
机构
[1] Qassim Univ, Dept Math, Educ Serv, Buraydah 51452, Saudi Arabia
[2] Jamia Millia Islamia, Dept Math, New Delhi 110025, India
[3] Aligarh Muslim Univ, Dept Math, Aligarh 202002, India
关键词
Quasi-?-nonexpansive mapping; fixed point problem; variational inequality problem; generalized mixed equilibrium problem; inertial hybrid iterative method; Banach space; CONVERGENCE THEOREMS;
D O I
10.2298/FIL2318133F
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce an inertial type gradient projection hybrid iterative method for finding a common solution of generalized mixed equilibrium, variational inequality and fixed point problems in a two -uniformly convex and uniformly smooth Banach space. Next, we analyze the strong convergence for a common solution of problem. Furthermore, we carry out some consequences and present a numerical example to show and tell the applicability of main theorem. Our result improves, unifies, generalizes and extends ones from several earlier works.
引用
收藏
页码:6133 / 6150
页数:18
相关论文
共 22 条
[1]  
Alber YI., 1996, THEORY APPL NONLINEA, P15
[2]  
Blum E., 1994, Math. Student, V63, P123
[3]  
Butnariu D, 2001, J APPL ANAL, V7, P151, DOI DOI 10.1515/JAA.2001.151
[4]   Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings [J].
Dong, Q. L. ;
Yuan, H. B. ;
Cho, Y. J. ;
Rassias, Th. M. .
OPTIMIZATION LETTERS, 2018, 12 (01) :87-102
[5]   Inertial Krasnosel'skii-Mann type hybrid algorithms for solving hierarchical fixed point problems [J].
Dong, Qiao-Li ;
Kazmi, K. R. ;
Ali, Rehan ;
Li, Xiao-Huan .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2019, 21 (02)
[6]  
Farid M, 2016, Journal of Nonlinear Analysis and Optimization, V7, P55
[7]   Strong convergence of gradient projection method for generalized equilibrium problem in a Banach space [J].
Farid, Mohammad ;
Irfan, Syed Shakaib ;
Khan, Mohammad Firdosh ;
Khan, Suhel Ahmad .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
[8]   Variational Inclusion Governed by αβ-H((.,.),(.,.))-Mixed Accretive Mapping [J].
Gupta, Sanjeev ;
Husain, Shamshad ;
Mishra, Vishnu Narayan .
FILOMAT, 2017, 31 (20) :6529-6542
[9]   ON SOME NON-LINEAR ELLIPTIC DIFFERENTIAL-FUNCTIONAL EQUATIONS [J].
HARTMAN, P ;
STAMPACCHIA, G .
ACTA MATHEMATICA UPPSALA, 1966, 115 (3-4) :271-+
[10]  
Husain S., 2013, AM J OPERATIONS RES, V3, P329