Sobolev regularity for nonlinear Poisson equations with Neumann boundary conditions on Riemannian manifolds

被引:6
作者
Goffi, Alessandro [2 ]
Pediconi, Francesco [1 ]
机构
[1] Aarhus Univ, Dept Math, Ny Munkegade 118, DK-8000 Aarhus C, Denmark
[2] Univ Padua, Dipartimento Matemat Tullio Levi Civita, Via Trieste 63, I-35121 Padua, Italy
关键词
Bernstein method; Bochner's identity; Hamilton-Jacobi equations; mean field games; Riemannian manifold; LIPSCHITZ REGULARITY; ELLIPTIC-EQUATIONS;
D O I
10.1515/forum-2022-0119
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the Sobolev regularity of solutions to nonlinear second order elliptic equations with super-linear first-order terms on Riemannian manifolds, complemented with Neumann boundary conditions, when the source term of the equation belongs to a Lebesgue space, under various integrability regimes. Our method is based on an integral refinement of the Bochner identity, and leads to "semilinear Calderon-Zygmund " type results. Applications to the problem of smoothness of solutions to Mean Field Games systems with Neumann boundary conditions posed on convex domains of the Euclidean space will also be discussed.
引用
收藏
页码:431 / 456
页数:26
相关论文
共 37 条
[1]  
Adams R A., 2003, Sobolev Spaces
[2]   LOCALLY CONVEX HYPERSURFACES OF NEGATIVELY CURVED SPACES [J].
ALEXANDER, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 64 (02) :321-325
[3]  
BAKRY D., 2014, Grundlehren Der Mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences, V348
[4]  
Bardi M., 1991, Asymptot. Anal., V4, P1, DOI 10.3233/ASY-1991-4101
[5]   Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries [J].
Baudoin, Fabrice ;
Garofalo, Nicola .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (01) :151-219
[6]  
BENSOUSSAN A, 2002, CHINESE ANN MATH B, V23, P165
[7]   Local and global properties of solutions of quasilinear Hamilton-Jacobi equations [J].
Bidaut-Veron, Marie-Francoise ;
Garcia-Huidobro, Marta ;
Veron, Laurent .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (09) :3294-3331
[8]   INFINITESIMAL CONVEXITY IMPLIES LOCAL CONVEXITY [J].
BISHOP, RL .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 24 (02) :169-172
[9]  
Bogachev V.I., 2018, Mathematical Surveys and Monographs, V234, DOI DOI 10.1090/SURV/234
[10]   Gradient regularity via rearrangements for p-Laplacian type elliptic boundary value problems [J].
Cianchi, Andrea ;
Maz'ya, Vladimir .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (03) :571-595