Xuanfei Baidu Formula attenuates LPS-induced acute lung injury by inhibiting the NF-?B signaling pathway

被引:17
|
作者
Zhu, Yanru [1 ,2 ]
Luo, Lifei [1 ,2 ]
Zhang, Meng [1 ,2 ]
Song, Xinbo [1 ,2 ]
Wang, Ping [2 ]
Zhang, Han [1 ]
Zhang, Jingze [2 ]
Liu, Dailin [1 ,2 ]
机构
[1] Tianjin Univ Tradit Chinese Med, State Key Lab Component based Chinese Med, Tianjin, Peoples R China
[2] Tianjin Modern Innovat Chinese Med Technol Co Ltd, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Xuanfei baidu formula; Acute lung injury; Component analysis; Network pharmacology; NF-?B signaling pathway; KAPPA-B; ULCERATIVE-COLITIS; INFLAMMATION; POLYDATIN; MICE;
D O I
10.1016/j.jep.2022.115833
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Ethnopharmacological relevance: Acute lung injury (ALI) is a common manifestation of COVID-19. Xuanfei Baidu Formula(XFBD) is used in China to treat mild or common damp-toxin obstructive pulmonary syndrome in COVID-19 patients. However, the active ingredients of XFBD have not been extensively studied, and its mech-anism of action in the treatment of ALI is not well understood.Aim of the study: The purpose of this study was to investigate the mechanism of action of XFBD in treating ALI in rats, by evaluating its active components.Materials and methods: Firstly, the chemical composition of XFBD was identified using ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry. The potential targets of XFBD for ALI treatment were predicted using network pharmacological analysis. Finally, the molecular mechanism of XFBD was validated using a RAW264.7 cell inflammation model and a mouse ALI model.Results: A total of 113 compounds were identified in XFBD. Network pharmacology revealed 34 hub targets between the 113 compounds and ALI. The results of Kyoto Encyclopedia of Genes and Genomes and gene ontology analyses indicated that the NF-Kappa B signaling pathway was the main pathway for XFBD in the treatment of ALI. We found that XFBD reduced proinflammatory factor levels in LPS-induced cellular models. By examining the lung wet/dry weight ratio and pathological sections in vivo, XFBD was found that XFBD could alleviate ALI. Immunohistochemistry results showed that XFBD inhibited ALI-induced increases in p-IKK, p-NF-Kappa B p65, and iNOS proteins. In vitro experiments demonstrated that XFBD inhibited LPS-induced activation of the NF-Kappa B pathway.Conclusion: This study identified the potential practical components of XFBD, combined with network pharma-cology and experimental validation to demonstrate that XFBD can alleviate lung injury caused by ALI by inhibiting the NF-Kappa B signaling pathway.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Isochlorogenic acid A attenuates acute lung injury induced by LPS via Nf-κB/NLRP3 signaling pathway
    Wang, Qin
    Xiao, Li
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2019, 11 (11): : 7018 - 7026
  • [22] Strictosamide ameliorates LPS-induced acute lung injury by targeting ERK2 and mediating NF-κB signaling pathway
    Geng, Qi
    Liu, Bin
    Fan, Danping
    Cao, Zhiwen
    Li, Li
    Lu, Peipei
    Lin, Lin
    Yan, Lan
    Xiong, Yibai
    He, Xiaojuan
    Lu, Jun
    Chen, Peng
    Lu, Cheng
    JOURNAL OF ETHNOPHARMACOLOGY, 2024, 322
  • [23] Protective effect of olopatadine hydrochloride against LPS-induced acute lung injury: via targeting NF-κB signaling pathway
    Jaspreet Kaur
    Priyanka Rana
    Tushar Matta
    Rupinder Kaur Sodhi
    Khushboo Pathania
    Sandip V. Pawar
    Anurag Kuhad
    Kanthi Kiran Kondepudi
    Tanzeer Kaur
    Neelima Dhingra
    Sangeeta Pilkhwal Sah
    Inflammopharmacology, 2024, 32 : 603 - 627
  • [24] Protective effect of olopatadine hydrochloride against LPS-induced acute lung injury: via targeting NF-κB signaling pathway
    Kaur, Jaspreet
    Rana, Priyanka
    Matta, Tushar
    Sodhi, Rupinder Kaur
    Pathania, Khushboo
    Pawar, Sandip V.
    Kuhad, Anurag
    Kondepudi, Kanthi Kiran
    Kaur, Tanzeer
    Dhingra, Neelima
    Sah, Sangeeta Pilkhwal
    INFLAMMOPHARMACOLOGY, 2024, 32 (01) : 603 - 627
  • [25] Anti-inflammatory effects of triptolide by inhibiting the NF-κB signalling pathway in LPS-induced acute lung injury in a murine model
    Wang, Xian
    Zhang, Lei
    Duan, Wei
    Liu, Bin
    Gong, Ping
    Ding, Yusong
    Wu, Xiongwen
    MOLECULAR MEDICINE REPORTS, 2014, 10 (01) : 447 - 452
  • [26] Phloretin attenuates LPS-induced acute lung injury in mice via modulation of the NF-κB and MAPK pathways
    Huang, Wen-Chung
    Lai, Ching-Long
    Liang, Yuan-Ting
    Hung, Hui-Chih
    Liu, Hui-Chia
    Liou, Chian-Jiun
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2016, 40 : 98 - 105
  • [27] Jinyinqingre Oral Liquid alleviates LPS-induced acute lung injury by inhibiting the NF-κB/NLRP3/GSDMD pathway
    WANG Shuhui
    LEI Pan
    FENG Ying
    JIANG Mingzhu
    LIU Zegan
    SHEN Ting
    MA Shinan
    WANG Libo
    GUO Xingrong
    DU Shiming
    Chinese Journal of Natural Medicines, 2023, 21 (06) : 423 - 435
  • [28] Jinyinqingre Oral Liquid alleviates LPS-induced acute lung injury by inhibiting the NF-κB/NLRP3/GSDMD pathway
    Wang, Shuhui
    Lei, Pan
    Feng, Ying
    Jiang, Mingzhu
    Liu, Zegan
    Shen, Ting
    Ma, Shinan
    Wang, Libo
    Guo, Xingrong
    Du, Shiming
    CHINESE JOURNAL OF NATURAL MEDICINES, 2023, 21 (06) : 423 - 435
  • [29] Lianqinjiedu decoction attenuates LPS-induced inflammation and acute lung injury in rats via TLR4/NF-κB pathway
    Deng, Guiming
    He, Hai
    Chen, Zheng
    OuYang, Linqi
    Xiao, Xiaoqin
    Ge, Jinwen
    Xiang, Biao
    Jiang, Sichen
    Cheng, Shaowu
    BIOMEDICINE & PHARMACOTHERAPY, 2017, 96 : 148 - 152
  • [30] Metformin attenuates LPS-induced neuronal injury and cognitive impairments by blocking NF-κB pathway
    Chenliang Zhou
    Bo Peng
    Zhenghui Qin
    Wei Zhu
    Cuiping Guo
    BMC Neuroscience, 22