SPEED UP ZIG-ZAG

被引:2
作者
Vasdekis, G. [1 ]
Roberts, G. O. [2 ]
机构
[1] UCL, Dept Stat Sci, London, England
[2] Univ Warwick, Dept Stat, Warwick, England
基金
英国工程与自然科学研究理事会;
关键词
Piecewise deterministic Markov process; Markov chain Monte Carlo; exponential er-godicity; central limit theorem; DETERMINISTIC MARKOV-PROCESSES; LONG-TIME BEHAVIOR; GEOMETRIC ERGODICITY; MONTE-CARLO; STABILITY; LIMIT;
D O I
10.1214/23-AAP1930
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Zig-Zag process is a piecewise deterministic Markov process, efficiently used for simulation in an MCMC setting. As we show in this article, it fails to be exponentially ergodic on heavy tailed target distributions. We introduce an extension of the Zig-Zag process by allowing the process to move with a nonconstant speed function s, depending on the current state of the process. We call this process Speed Up Zig-Zag (SUZZ). We provide conditions that guarantee stability properties for the SUZZ process, includ-ing nonexplosivity, exponential ergodicity in heavy tailed targets and central limit theorem. Interestingly, we find that using speed functions that induce explosive deterministic dynamics may lead to stable algorithms that can even mix faster. We further discuss the choice of an efficient speed function by pro-viding an efficiency criterion for the one-dimensional process and we support our findings with simulation results.
引用
收藏
页码:4693 / 4746
页数:54
相关论文
共 54 条
[1]   Subgeometric hypocoercivity for piecewise-deterministic Markov process Monte Carlo methods [J].
Andrieu, Christophe ;
Dobson, Paul ;
Wang, Andi Q. .
ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
[2]   Spectral analysis of the zigzag process [J].
Bierkens, Joris ;
Lunel, Sjoerd M. Verduyn .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (02) :827-860
[3]   LARGE DEVIATIONS FOR THE EMPIRICAL MEASURE OF THE ZIG-ZAG PROCESS [J].
Bierkens, Joris ;
Nyquist, Pierre ;
Schlottke, Mikola C. .
ANNALS OF APPLIED PROBABILITY, 2021, 31 (06) :2811-2843
[4]   A piecewise deterministic Monte Carlo method for diffusion bridges [J].
Bierkens, Joris ;
Grazzi, Sebastiano ;
van der Meulen, Frank ;
Schauer, Moritz .
STATISTICS AND COMPUTING, 2021, 31 (03)
[5]   ERGODICITY OF THE ZIGZAG PROCESS [J].
Bierkens, Joris ;
Roberts, Gareth O. ;
Zitt, Pierre-Andre .
ANNALS OF APPLIED PROBABILITY, 2019, 29 (04) :2266-2301
[6]   Piecewise deterministic Markov processes for scalable Monte Carlo on restricted domains [J].
Bierkens, Joris ;
Bouchard-Cote, Alexandre ;
Doucet, Arnaud ;
Duncan, Andrew B. ;
Fearnhead, Paul ;
Lienart, Thibaut ;
Roberts, Gareth ;
Vollmer, Sebastian J. .
STATISTICS & PROBABILITY LETTERS, 2018, 136 :148-154
[7]   LIMIT THEOREMS FOR THE ZIG-ZAG PROCESS [J].
Bierkens, Joris ;
Duncan, Andrew .
ADVANCES IN APPLIED PROBABILITY, 2017, 49 (03) :791-825
[8]   A PIECEWISE DETERMINISTIC SCALING LIMIT OF LIFTED METROPOLIS-HASTINGS IN THE CURIE WEISS MODEL [J].
Bierkens, Joris ;
Roberts, Gareth .
ANNALS OF APPLIED PROBABILITY, 2017, 27 (02) :846-882
[9]   Non-reversible Metropolis-Hastings [J].
Bierkens, Joris .
STATISTICS AND COMPUTING, 2016, 26 (06) :1213-1228
[10]  
Bierkens Joris., 2020, PMLR, P908