Floating Fe Catalyst Formation and Effects of Hydrogen Environment in the Growth of Carbon Nanotubes

被引:11
作者
Lei, Jincheng [1 ]
V. Bets, Ksenia [1 ]
Penev, Evgeni S. [1 ]
Yakobson, Boris I. [1 ,2 ]
机构
[1] Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA
[2] Rice Univ, Dept Chem, Houston, TX 77005 USA
关键词
DECOMPOSITION; FIBERS; NUCLEATION; FERROCENE; MECHANISMS; METHANE; SPUN; CO;
D O I
10.1021/acs.jpclett.3c00716
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrocarbon conversion to advanced carbon nanomaterials with concurrent hydrogen production holds promise for clean energy technologies. This has been largely enabled by the floating catalyst chemical vapor deposition (FCCVD) growth of carbon nanotubes (CNTs), where commonly catalytic iron nanoparticles are formed from ferrocene decomposition. However, the catalyst formation mechanism and the effect of the chemical environment, especially hydrogen, remain elusive. Here, by employing atomistic simulations, we demonstrate how (i) hydrogen accelerates the ferrocene decomposition and (ii) prevents catalyst encapsulation. A subsequent catalytic dehydrogenation of methane on a liquid Fe nanoparticle showed that carbon dimers tend to be the dominant on-surface species. Such atomistic insights help us better understand the catalyst formation and CNT nucleation in the early stages of the FCCVD growth process and optimize it for potential scaleup.
引用
收藏
页码:4266 / 4272
页数:7
相关论文
共 47 条
[1]   DFTB+, a sparse matrix-based implementation of the DFTB method [J].
Aradi, B. ;
Hourahine, B. ;
Frauenheim, Th. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 111 (26) :5678-5684
[2]   Why nanotubes grow chiral [J].
Artyukhov, Vasilii I. ;
Penev, Evgeni S. ;
Yakobson, Boris I. .
NATURE COMMUNICATIONS, 2014, 5
[3]   Equilibrium at the edge and atomistic mechanisms of graphene growth [J].
Artyukhov, Vasilii I. ;
Liu, Yuanyue ;
Yakobson, Boris I. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (38) :15136-15140
[4]   Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity [J].
Behabtu, Natnael ;
Young, Colin C. ;
Tsentalovich, Dmitri E. ;
Kleinerman, Olga ;
Wang, Xuan ;
Ma, Anson W. K. ;
Bengio, E. Amram ;
ter Waarbeek, Ron F. ;
de Jong, Jorrit J. ;
Hoogerwerf, Ron E. ;
Fairchild, Steven B. ;
Ferguson, John B. ;
Maruyama, Benji ;
Kono, Junichiro ;
Talmon, Yeshayahu ;
Cohen, Yachin ;
Otto, Marcin J. ;
Pasquali, Matteo .
SCIENCE, 2013, 339 (6116) :182-186
[5]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[6]   Forecasting carbon nanotube diameter in floating catalyst chemical vapor deposition [J].
Bulmer, John S. ;
Sloan, Arthur W. N. ;
Glerum, Michael ;
Carpena-Nunez, Jennifer ;
Waelder, Robert ;
Humes, Jefford ;
Boies, Adam M. ;
Pasquali, Matteo ;
Rao, Rahul ;
Maruyama, Benji .
CARBON, 2023, 201 :719-733
[7]   Viscous State Effect on the Activity of Fe Nanocatalysts [J].
Cervantes-Sodi, Felipe ;
McNicholas, Thomas P. ;
Simmons, Jay G., Jr. ;
Liu, Jie ;
Csanyi, Gabor ;
Ferrari, Andrea C. ;
Curtarolo, Stefano .
ACS NANO, 2010, 4 (11) :6950-6956
[8]   A Review of Three Major Factors Controlling Carbon Nanotubes Synthesis from the Floating Catalyst Chemical Vapor Deposition [J].
Chen, Daniel Rui ;
Chitranshi, Megha ;
Schulz, Mark ;
Shanov, Vesselin .
NANO LIFE, 2019, 9 (04)
[9]   Combined first-principles and machine learning study of the initial growth of carbon nanomaterials on metal surfaces [J].
Chen, Rong ;
Liu, Fu ;
Tang, Yuchao ;
Liu, Yanjie ;
Dong, Ziqiang ;
Deng, Zhenyan ;
Zhao, Xinluo ;
Liu, Yi .
APPLIED SURFACE SCIENCE, 2022, 586
[10]   Carbon nanotube reactor: Ferrocene decomposition, iron particle growth, nanotube aggregation and scale-up [J].
Conroy, Devin ;
Moisala, Anna ;
Cardoso, Silvana ;
Windle, Alan ;
Davidson, John .
CHEMICAL ENGINEERING SCIENCE, 2010, 65 (10) :2965-2977