Effect of Microstructure on Mechanical Properties of Quenching & Partitioning Steel

被引:10
|
作者
Toji, Yuki [1 ]
Nakagaito, Tatsuya [2 ]
Matsuda, Hiroshi [3 ]
Hasegawa, Kohei [4 ]
Kaneko, Shinjiro [1 ]
机构
[1] JFE Steel Corp, Steel Res Lab, 1 Kawasaki Cho,Chuo Ku, Chiba 2600835, Japan
[2] JFE Steel Corp, Steel Res Lab, 1 Kokan Cho, Fukuyama, Hiroshima 7218510, Japan
[3] JFE Steel Corp, Steel Res Lab, 1-1 Minamiwatarida Cho,Kawasaki Ku, Kawasaki, Kanagawa 2100855, Japan
[4] JFE Steel Corp, West Japan Works, 1 Kokan Cho, Fukuyama, Hiroshima 7218510, Japan
基金
日本学术振兴会;
关键词
Q&P steel; TRIP steel; quenching & partitioning; retained austenite; martensite; bainite; stretch-flange-formability; hole expansion ratio; RETAINED AUSTENITE; CARBON; STRENGTH;
D O I
10.2355/isijinternational.ISIJINT-2022-508
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The microstructure and mechanical properties of a low-carbon steel produced via the quenching & partitioning (Q&P) heat treatment was investigated, with particular focus on the hole expansion ratio, which is an index of the stretch-flange-formability. 0.19mass%C-1.5mass%Si-2.9mass%Mn steel was annealed at 850 degrees C, then cooled to 150-400 degrees C (QT: quench temperature), followed by holding at 400 degrees C for 1 100 s. Yield strength and hole expansion ratio drastically increased when the QT was below the Ms (martensite start) temperature. The steel with QT of 300 degrees C exhibited not only a higher elongation, which has been well documented, but also a higher hole expansion ratio, when compared to the conventional TRIP steel with QT of 400 degrees C having equal tensile strength around 1 200 MPa. The micro-void formation during deformation was suppressed in the steel with QT of 300 degrees C due to the smaller volume fraction of large blocky martensite compared to the TRIP steel. These excellent mechanical properties are attributed to its unique microstructure consisting of a certain amount of tempered martensite, lath-shaped retained austenite and bainitic ferrite, which was generated via the Q&P heat treatment.
引用
收藏
页码:758 / 765
页数:8
相关论文
共 50 条
  • [1] Effect of microstructure morphology on mechanical properties of quenching and partitioning steel
    Sun, Shaoheng
    Zhao, Aimin
    MATERIALS SCIENCE AND TECHNOLOGY, 2018, 34 (03) : 347 - 354
  • [2] Effect of Heat Treatment on Microstructure and Mechanical Properties of Quenching and Partitioning Steel
    Sun, Shao-Heng
    Zhao, Ai-Min
    Ding, Ran
    Li, Xiao-Gang
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2018, 31 (02) : 216 - 224
  • [3] Effect of partial and full austenitisation on microstructure and mechanical properties of quenching and partitioning steel
    Mandal, G.
    Ghosh, S. K.
    Bera, S.
    Mukherjee, S.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 676 : 56 - 64
  • [4] Effect of Heat Treatment on Microstructure and Mechanical Properties of Quenching and Partitioning Steel
    Shao-Heng Sun
    Ai-Min Zhao
    Ran Ding
    Xiao-Gang Li
    Acta Metallurgica Sinica(English Letters), 2018, 31 (02) : 216 - 224
  • [5] Effect of Heat Treatment on Microstructure and Mechanical Properties of Quenching and Partitioning Steel
    Shao-Heng Sun
    Ai-Min Zhao
    Ran Ding
    Xiao-Gang Li
    Acta Metallurgica Sinica (English Letters), 2018, 31 : 216 - 224
  • [6] Effect of Quenching and Partitioning Processing on Microstructure and Mechanical Properties of a Low Alloyed Steel
    Pfleger, Bernd
    Gruber, Marina
    Ressel, Gerald
    Gruber, Peter
    Galler, Matthew
    Marsoner, Stefan
    Ebner, Reinhold
    THERMEC 2018: 10TH INTERNATIONAL CONFERENCE ON PROCESSING AND MANUFACTURING OF ADVANCED MATERIALS, 2018, 941 : 52 - 57
  • [7] Effect of a quenching-long partitioning treatment on the microstructure and mechanical properties of a 0.2C% bainitic steel
    Huang, Xuefei
    Liu, Wenli
    Huang, Yuyin
    Chen, Hu
    Huang, Weigang
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2015, 222 : 181 - 187
  • [8] Partitioning-related microstructure evolution and mechanical behavior in a δ-quenching and partitioning steel
    Chen, P.
    Li, X. W.
    Wang, P. F.
    Wang, G. D.
    Guo, J. Y.
    Liu, R. D.
    Yi, H. L.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 17 : 1338 - 1348
  • [9] Effect of Quenching and Partitioning on Microstructure and Mechanical Properties of High-Carbon Nb Microalloyed Steel
    Dey, I.
    Saha, R.
    Mahato, B.
    Ghosh, M.
    Ghosh, S. K.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2024, 55 (08): : 2736 - 2755
  • [10] Effect of quenching-partitioning treatment on the microstructure, mechanical and abrasive properties of high carbon steel
    Lai, Jian-ping
    Yu, Jia-xin
    Wang, Jiong
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2021, 28 (04) : 676 - 687