The effect of Ti to the crystal structure of Li7-3xMxLa3Zr1.8Ti0.2O12 (M= Ga, In) garnet-type solid electrolytes as a second dopant

被引:4
|
作者
Saran, Sevda [1 ]
Eker, Yasin Ramazan [2 ]
Ates, Sule [1 ]
Celik, Gultekin [1 ]
Baveghar, Hadi [3 ]
Ozkendir, Osman Murat [4 ]
Atav, Ulfet [1 ]
Klysubun, Wantana [5 ]
机构
[1] Selcuk Univ, Fac Sci, Dept Phys, Konya, Turkey
[2] Necmettin Erbakan Univ, Fac Engn & Architecture, Dept Met & Mat Engn, Konya, Turkey
[3] Selcuk Univ, Inst Sci, Nanotechnol & Adv Mat, Konya, Turkey
[4] Tarsus Univ, Fac Engn, Dept Nat & Math Sci, Mersin, Turkey
[5] Synchrotron Light Res Inst SLRI, Nakhon Ratchasima, Thailand
关键词
Garnet-type solid electrolytes; solid-state batteries; solid electrolytes; energy; LI-ION CONDUCTIVITY; SUBSTITUTION; TRANSPORT; STABILITY; AL;
D O I
10.1080/17436753.2023.2167680
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Garnet-type solid-state electrolytes are promising candidates for solid-state lithium batteries, nevertheless their ionic conductivity is still not enough for commercial applications. On the other hand, doping still is the common way to improve the ionic conductivities of these solid electrolytes. In this study, mono and dual-doped garnet-type solid electrolytes were synthesised by substituting indium (In), gallium (Ga), indium-titanium (In-Ti) and gallium-titanium (Ga-Ti) to the Li7La3Zr2O12 structure by a solid-state reaction method. The contribution of substitutions to the formation of crystal phases was investigated by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). On the other hand, morphological analyses were done by scanning electron microscope (SEM) and the ionic conductivities of the solid electrolytes were determined by electrochemical impedance spectroscopy (EIS). The study showed that while Li7-3xInxLa3Zr2O12 (for x = 0.05, 0.10, 0.15, 0.20) and Li7-3xGaxLa3Zr2O12 (for x = 0.05) samples were formed in tetragonal phase with a space group of I41/acd:2, dual substituted Li7-3xInxLa3Zr1.8Ti0.2O12 and Li7-3xGaxLa3Zr1.8Ti0.2O12 solid electrolytes for all x values were formed in cubic phase with a space group of I-43d. The highest conductivity is reached for Li6.85Ga0.05La3Zr1.8Ti0.2O12. The radial distribution function studies showed that when more In and Ga atoms take place in the sites of Li atoms, more O atoms take place in the vicinity of both substituted In and Ga atoms within the Li7La3Zr1.8Ti0.2O12 (LLZTO) crystal framework which can eventuate in a change in the conduction mechanism.
引用
收藏
页码:238 / 246
页数:9
相关论文
共 50 条
  • [1] Preparation and characterization of Ga and Sr co-doped Li7La3Zr2O12 garnet-type solid electrolyte
    Shen, Liwei
    Wang, Li
    Wang, Zhangjun
    Jin, Chao
    Peng, Lin
    Pan, Xiaowei
    Sun, Jiawen
    Yang, Ruizhi
    SOLID STATE IONICS, 2019, 339
  • [2] Influence of Ga on the Structure and Electrical Properties of Li7-3xLa3GaxZr2O12 Garnet-Type Solid Electrolytes
    Devi, Pooja
    Gupta, Ashish
    Rohilla, Vishal
    Mariappan, C. R.
    Kumar, Ashavani
    JOURNAL OF ELECTRONIC MATERIALS, 2024, : 3534 - 3544
  • [3] Effects of Gallium Doping in Garnet-Type Li7La3Zr2O12 Solid Electrolytes
    Jalem, Randy
    Rushton, M. J. D.
    Manalastas, William, Jr.
    Nakayama, Masanobu
    Kasuga, Toshihiro
    Kilner, John A.
    Grimes, Robin W.
    CHEMISTRY OF MATERIALS, 2015, 27 (08) : 2821 - 2831
  • [4] Tortuosity Effects in Garnet-Type Li7La3Zr2O12 Solid Electrolytes
    Dixit, Marm B.
    Regala, Matthew
    Shen, Fengyu
    Xiao, Xianghui
    Hatzell, Kelsey B.
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (02) : 2022 - 2030
  • [5] Effect of dual doping on the structure and performance of garnet-type Li7La3Zr2O12 ceramic electrolytes for solid-state lithium-ion batteries
    Luo, Yali
    Zhang, Yanli
    Zhang, Qixi
    Zheng, Yifeng
    Chen, Han
    Guo, Lucun
    CERAMICS INTERNATIONAL, 2019, 45 (14) : 17874 - 17883
  • [6] Self-diffusion in garnet-type Li7La3Zr2O12 solid electrolytes
    Kuganathan, Navaratnarajah
    Rushton, Michael J. D.
    Grimes, Robin W.
    Kilner, John A.
    Gkanas, Evangelos I.
    Chroneos, Alexander
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [7] Processing and Properties of Garnet-Type Li7La3Zr2O12 Ceramic Electrolytes
    Chen, Chao
    Wang, Kexin
    He, Hongying
    Hanc, Emil
    Kotobuki, Masashi
    Lu, Li
    SMALL, 2023, 19 (12)
  • [8] Improved Ga-doped Li7La3Zr2O12 garnet-type solid electrolytes for solid-state Li-ion batteries
    Sharifi, Omid
    Golmohammad, Mohammad
    Soozandeh, Mozhde
    Mehranjani, Alireza Soleimany
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2023, 27 (09) : 2433 - 2444
  • [9] Effect of Al and Nb Doping on the Electrochemical Characteristics of Garnet-type Li7La3Zr2O12 Solid Electrolytes
    Tarif, Ahmed
    Park, Chan-Jin
    CORROSION SCIENCE AND TECHNOLOGY-KOREA, 2023, 22 (06): : 408 - 418
  • [10] Modeling, Preparation, and Elemental Doping of Li7La3Zr2O12 Garnet-Type Solid Electrolytes: A Review
    Cao, Shiyu
    Song, Shangbin
    Xiang, Xing
    Hu, Qing
    Zhang, Chi
    Xia, Ziwen
    Xu, Yinghui
    Zha, Wenping
    Li, Junyang
    Gonzale, Paulina Mercedes
    Han, Young-Hwan
    Chen, Fei
    JOURNAL OF THE KOREAN CERAMIC SOCIETY, 2019, 56 (02) : 111 - 129