A novel multi-module integrated intrusion detection system for high-dimensional imbalanced data

被引:68
作者
Cui, Jiyuan [1 ]
Zong, Liansong [1 ]
Xie, Jianhua [1 ]
Tang, Mingwei [1 ]
机构
[1] Xihua Univ, Sch Comp & Software Engn, Chengdu 610039, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Intrusion detection system; Stacked autoencoder; Gaussian mixture model; Wasserstein generative adversarial network; Imbalance processing; Feature extraction; Deep learning; NETWORK; ALGORITHM;
D O I
10.1007/s10489-022-03361-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The high dimension, complexity, and imbalance of network data are hot issues in the field of intrusion detection. Nowadays, intrusion detection systems face some challenges in improving the accuracy of minority classes detection, detecting unknown attacks, and reducing false alarm rates. To address the above problems, we propose a novel multi-module integrated intrusion detection system, namely GMM-WGAN-IDS. The system consists of three parts, such as feature extraction, imbalance processing, and classification. Firstly, the stacked autoencoder-based feature extraction module (SAE module) is proposed to obtain a deeper representation of the data. Secondly, on the basis of combining the clustering algorithm based on gaussian mixture model and the wasserstein generative adversarial network based on gaussian mixture model, the imbalance processing module (GMM-WGAN) is proposed. Thirdly, the classification module (CNN-LSTM) is designed based on convolutional neural network (CNN) and long short-term memory (LSTM). We evaluate the performance of GMM-WGAN-IDS on the NSL-KDD and UNSW-NB15 datasets, comparing it with other intrusion detection methods. Finally, the experimental results show that our proposed GMM-WGAN-IDS outperforms the state-of-the-art methods and achieves better performance.
引用
收藏
页码:272 / 288
页数:17
相关论文
共 45 条
[1]   A Convolutional Neural Network for Improved Anomaly-Based Network Intrusion Detection [J].
Al-Turaiki, Isra ;
Altwaijry, Najwa .
BIG DATA, 2021, 9 (03) :233-252
[2]  
[Anonymous], 2019, COMPUT FRAUD SECUR, P4
[3]  
Arjovsky M, 2017, PR MACH LEARN RES, V70
[4]   Medicare Fraud Detection using Random Forest with Class Imbalanced Big Data [J].
Bauder, Richard A. ;
Khoshgoftaar, Taghi M. .
2018 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IRI), 2018, :80-87
[5]   I-SiamIDS: an improved Siam-IDS for handling class imbalance in network-based intrusion detection systems [J].
Bedi, Punam ;
Gupta, Neha ;
Jindal, Vinita .
APPLIED INTELLIGENCE, 2021, 51 (02) :1133-1151
[6]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[7]   Adversarial environment reinforcement learning algorithm for intrusion detection [J].
Caminero, Guillermo ;
Lopez-Martin, Manuel ;
Carro, Belen .
COMPUTER NETWORKS, 2019, 159 :96-109
[8]   Recent Advances of Generative Adversarial Networks in Computer Vision [J].
Cao, Yang-Jie ;
Jia, Li-Li ;
Chen, Yong-Xia ;
Lin, Nan ;
Yang, Cong ;
Zhang, Bo ;
Liu, Zhi ;
Li, Xue-Xiang ;
Dai, Hong-Hua .
IEEE ACCESS, 2019, 7 :14985-15006
[9]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[10]   Deep Learning-Based Classification of Hyperspectral Data [J].
Chen, Yushi ;
Lin, Zhouhan ;
Zhao, Xing ;
Wang, Gang ;
Gu, Yanfeng .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2094-2107