T-Net: Hierarchical Pyramid Network for Microaneurysm Detection in Retinal Fundus Image

被引:6
作者
Zhang, Xinpeng [1 ,2 ]
Zhao, Meng [1 ,2 ]
Zhang, Yao [1 ,2 ]
Ao, Ji [1 ,2 ]
Yang, Hongxia [1 ,2 ]
Wang, Congcong [1 ,2 ]
Chen, Shengyong [1 ,2 ]
机构
[1] Tianjin Univ Technol, Engn Res Ctr Learning Based Intelligent Syst, Minist Educ, Tianjin 300384, Peoples R China
[2] Tianjin Univ Technol, Key Lab Comp Vis & Syst, Minist Educ, Tianjin 300384, Peoples R China
基金
中国国家自然科学基金;
关键词
Attention-based feature pyramid network (AFPN); hierarchical pyramid network; microaneurysm (MA) detection; receptive fields; retinal fundus image; DIABETIC-RETINOPATHY; AUTOMATIC DETECTION; TRANSFORM; LESIONS;
D O I
10.1109/TIM.2023.3286003
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The mainstream techniques to detect microaneurysm (MA) in medical images involve the use of stacked convolutional neural networks (SCNNs). But these techniques cannot provide adequate detecting performance for the MA scenarios with limited information and different sizes. In this article, a hierarchical pyramid network with a "T" structure is proposed to detect MAs in retinal fundus images, which can overcome the difficulties caused by the above scenarios. We design a data preparation (DP) technique that can adaptively compute the best receptive fields of MAs to generate various patch sizes, resulting in multisize datasets for training. The "T" network consists of two pyramid feature extractors, rather than a deep network to adequately extract features of MAs and avoid feature loss caused by deep layers. Experiments on five public retinal datasets demonstrate that our method achieves the state-of-the-art performance.
引用
收藏
页数:13
相关论文
共 47 条
[1]   Identification and classification of microaneurysms for early detection of diabetic retinopathy [J].
Akram, M. Usman ;
Khalid, Shehzad ;
Khan, Shoab A. .
PATTERN RECOGNITION, 2013, 46 (01) :107-116
[2]  
[Anonymous], 2007, BMVC 2007 P BRIT MAC, DOI DOI 10.5244/C.21
[3]   A novel microaneurysms detection approach based on convolutional neural networks with reinforcement sample learning algorithm [J].
Budak U. ;
Şengür A. ;
Guo Y. ;
Akbulut Y. .
Health Information Science and Systems, 5 (1)
[4]   An effective infrared small target detection method based on the human visual attention [J].
Chen, Yuwen ;
Song, Bin ;
Wang, Dianjun ;
Guo, Linghua .
INFRARED PHYSICS & TECHNOLOGY, 2018, 95 :128-135
[5]   Explainable end-to-end deep learning for diabetic retinopathy detection across multiple datasets [J].
Chetoui, Mohamed ;
Akhloufi, Moulay A. .
JOURNAL OF MEDICAL IMAGING, 2020, 7 (04)
[6]   Microaneurysm Detection using Deep Learning and Interleaved Freezing [J].
Chudzik, Piotr ;
Majumdar, Somshubra ;
Caliva, Francesco ;
Al-Diri, Bashir ;
Hunter, Andrew .
MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
[7]   Microaneurysm detection using fully convolutional neural networks [J].
Chudzik, Piotr ;
Majumdar, Somshubra ;
Caliva, Francesco ;
Al-Diri, Bashir ;
Hunter, Andrew .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 158 :185-192
[8]   Retinal Microaneurysms Detection Using Local Convergence Index Features [J].
Dashtbozorg, Behdad ;
Zhang, Jiong ;
Huang, Fan ;
Romeny, Bart M. ter Haar .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (07) :3300-3315
[9]   TeleOphta: Machine learning and image processing methods for teleophthalmology [J].
Decenciere, E. ;
Cazuguel, G. ;
Zhang, X. ;
Thibault, G. ;
Klein, J. -C. ;
Meyer, F. ;
Marcotegui, B. ;
Quellec, G. ;
Lamard, M. ;
Danno, R. ;
Elie, D. ;
Massin, P. ;
Viktor, Z. ;
Erginay, A. ;
Lay, B. ;
Chabouis, A. .
IRBM, 2013, 34 (02) :196-203
[10]   Automated detection of microaneurysms using Stockwell transform and statistical features [J].
Deepa, V. ;
Kumar, C. Sathish ;
Andrews, Sheena Susan .
IET IMAGE PROCESSING, 2019, 13 (08) :1341-1348