Derivation of Buckling Knockdown Factors for Pressurized Orthogrid-Stiffened Cylinders of Launch Vehicle Structures

被引:7
作者
Sim, Chang-Hoon [1 ]
Kim, Do-Young [2 ]
Park, Jae-Sang [1 ]
Yoo, Joon-Tae [3 ]
Yoon, Young-Ha [3 ]
Lee, Keejoo [4 ]
机构
[1] Chungnam Natl Univ, Dept Aerosp Engn, Daejeon 34134, South Korea
[2] Korea Aerosp Ind, Rotorcraft Struct Design Team, Sacheon 52529, South Korea
[3] Korea Aerosp Res Inst, Launcher Struct & Mat Team, Daejeon 34133, South Korea
[4] Korea Aerosp Res Inst, Small Launch Vehicle Res Div, Daejeon 34133, South Korea
基金
新加坡国家研究基金会;
关键词
Launch vehicle; Propellant tank; Orthgrid-stiffened cylinder; Buckling knockdown factor; Internal pressure; Initial Imperfection; Postbuckling analysis; CYLINDRICAL-SHELLS; AXIAL-COMPRESSION; ROBUST DESIGN; LOAD; SIMULATION; SPACE;
D O I
10.1007/s42405-023-00621-4
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Postbuckling analyses are conducted to derive the buckling KnockDown Factor (KDF) of pressurized orthogrid-stiffened cylinders for space launch vehicles. The pressurized orthogrid-stiffened cylinders are based on the NASA ETTA1 model. The commercial finite element analysis program, ABAQUS, is used for the numerical analyses. Two different initial imperfection modeling techniques, namely, the Single Perturbation Load Approach (SPLA) and the Single Boundary Perturbation Approach (SBPA), are used to represent the geometric initial imperfection only and geometric and loading imperfections, respectively. The KDFs considering the internal pressure are improved when compared to those with pure axial compression. The KDFs using the SBPA can provide a conservative buckling design that satisfies the lightweight structural design and prevents buckling failure.
引用
收藏
页码:1295 / 1310
页数:16
相关论文
共 24 条
[1]  
[Anonymous], 2013, Abaqus User's Manual
[2]   Future structural stability design for composite space and airframe structures [J].
Degenhardt, Richard ;
Castro, Saullo G. P. ;
Arbelo, Mariano A. ;
Zimmerman, Rolf ;
Khakimova, Regina ;
Kling, Alexander .
THIN-WALLED STRUCTURES, 2014, 81 :29-38
[3]   Discrepancy between boundary conditions and load introduction of full-scale built-in and sub-scale experimental shell structures of space launcher vehicles [J].
Friedrich, Linus ;
Schroeder, Kai-Uwe .
THIN-WALLED STRUCTURES, 2016, 98 :403-415
[4]   BUCKLING OF THIN-WALLED CIRCULAR CYLINDERS UNDER AXIAL COMPRESSION AND INTERNAL PRESSURE [J].
FUNG, YC ;
SECHLER, EE .
JOURNAL OF THE AERONAUTICAL SCIENCES, 1957, 24 (05) :351-356
[5]   Worst Multiple Perturbation Load Approach of stiffened shells with and without cutouts for improved knockdown factors [J].
Hao, Peng ;
Wang, Bo ;
Li, Gang ;
Meng, Zeng ;
Tian, Kuo ;
Zeng, Dujuan ;
Tang, Xiaohan .
THIN-WALLED STRUCTURES, 2014, 82 :321-330
[6]  
Haynie W., 2012, 53 AIAA ASME ASCE AH
[7]  
Hilburger M.W., 2012, 53 AIAAASMEASCEAHSAS, DOI [10.2514/6. 2012-1686, DOI 10.2514/6.2012-1686]
[8]   Robust design of composite cylindrical shells under axial compression -: Simulation and validation [J].
Huehne, C. ;
Rolfes, R. ;
Breitbach, E. ;
Tessmer, J. .
THIN-WALLED STRUCTURES, 2008, 46 (7-9) :947-962
[9]   Buckling Knockdown Factors of Composite Cylinders under Both Compression and Internal Pressure [J].
Kim, Do-Young ;
Sim, Chang-Hoon ;
Park, Jae-Sang ;
Yoo, Joon-Tae ;
Yoon, Young-Ha ;
Lee, Keejoo .
AEROSPACE, 2021, 8 (11)
[10]  
Kobayashi T, 2014, SHELL STRUCTURES: THEORY AND APPLICATIONS, VOL 3, P203