Emergent computations in trained artificial neural networks and real brains

被引:4
作者
Parga, N. [1 ,2 ]
Serrano-Fernandez, L. [1 ,2 ]
Falco-Roget, J. [3 ]
机构
[1] Univ Autonoma Madrid, Dept Fis Teor, Madrid 28049, Spain
[2] Univ Autonoma Madrid, Ctr Invest Avanzada Fis Fundamental, Madrid 28049, Spain
[3] Sano Ctr Computat Personalised Med, Comp Vis Grp, Czarnowiejska 36 Bldg C5, PL-30054 Krakow, Poland
基金
欧盟地平线“2020”;
关键词
Simulation methods and programs; Data processing methods; OBJECT WORKING-MEMORY; CHAOS; TIME; CORTEX; DECISION; NEURONS; BACKPROPAGATION; ORGANIZATION; PLASTICITY; PATTERNS;
D O I
10.1088/1748-0221/18/02/C02060
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Synaptic plasticity allows cortical circuits to learn new tasks and to adapt to changing environments. How do cortical circuits use plasticity to acquire functions such as decision-making or working memory? Neurons are connected in complex ways, forming recurrent neural networks, and learning modifies the strength of their connections. Moreover, neurons communicate emitting brief discrete electric signals. Here we describe how to train recurrent neural networks in tasks like those used to train animals in neuroscience laboratories and how computations emerge in the trained networks. Surprisingly, artificial networks and real brains can use similar computational strategies.
引用
收藏
页数:28
相关论文
共 87 条
[1]   Towards a Theory of Early Visual Processing [J].
Atick, Joseph J. ;
Redlich, A. Norman .
NEURAL COMPUTATION, 1990, 2 (03) :308-320
[2]   From fixed points to chaos: Three models of delayed discrimination [J].
Barak, Omri ;
Sussillo, David ;
Romo, Ranulfo ;
Tsodyks, Misha ;
Abbott, L. F. .
PROGRESS IN NEUROBIOLOGY, 2013, 103 :214-222
[3]  
Barlow HB., 1961, The coding of sensory messages
[4]   A solution to the learning dilemma for recurrent networks of spiking neurons [J].
Bellec, Guillaume ;
Scherr, Franz ;
Subramoney, Anand ;
Hajek, Elias ;
Salaj, Darjan ;
Legenstein, Robert ;
Maass, Wolfgang .
NATURE COMMUNICATIONS, 2020, 11 (01)
[5]   Real-time computation at the edge of chaos in recurrent neural networks [J].
Bertschinger, N ;
Natschläger, T .
NEURAL COMPUTATION, 2004, 16 (07) :1413-1436
[6]  
Bishop C., 2006, Pattern Recognition and Machine Learning
[7]   Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition [J].
Brunel, N ;
Wang, XJ .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2001, 11 (01) :63-85
[8]   Dynamic Control of Response Criterion in Premotor Cortex during Perceptual Detection under Temporal Uncertainty [J].
Carnevale, Federico ;
de Lafuente, Victor ;
Romo, Ranulfo ;
Barak, Omri ;
Parga, Nestor .
NEURON, 2015, 86 (04) :1067-1077
[9]   An Optimal Decision Population Code that Accounts for Correlated Variability Unambiguously Predicts a Subject's Choice [J].
Carnevale, Federico ;
de Lafuente, Victor ;
Romo, Ranulfo ;
Parga, Nestor .
NEURON, 2013, 80 (06) :1532-1543
[10]   Computing by Robust Transience: How the Fronto-Parietal Network Performs Sequential, Category-Based Decisions [J].
Chaisangmongkon, Warasinee ;
Swaminathan, Sruthi K. ;
Freedman, David J. ;
Wang, Xiao-Jing .
NEURON, 2017, 93 (06) :1504-+