Modeling and analyzing single-cell multimodal data with deep parametric inference

被引:53
作者
Hu, Huan [1 ]
Feng, Zhen [2 ]
Lin, Hai [3 ]
Zhao, Junjie [4 ]
Zhang, Yaru [5 ]
Xu, Fei [1 ]
Chen, Lingling [1 ]
Chen, Feng
Ma, Yunlong [5 ]
Su, Jianzhong [3 ]
Zhao, Qi [6 ]
Shuai, Jianwei [1 ,3 ,7 ,8 ]
机构
[1] Xiamen Univ, Dept Phys, Xiamen, Peoples R China
[2] Wenzhou Med Univ, Affiliated Hosp 1, Wenzhou 1, Peoples R China
[3] Univ Chinese Acad Sci, Wenzhou Inst, Wenzhou, Peoples R China
[4] Guangzhou Univ, Cyberspace Inst Adv Technol, Guangzhou, Peoples R China
[5] Wenzhou Med Univ, Sch Biomed Engn, Wenzhou, Peoples R China
[6] Univ Sci & Technol Liaoning, Sch Comp Sci & Software Engn, Anshan, Peoples R China
[7] Natl Inst Data Sci Hlth & Med, Xiamen, Peoples R China
[8] Innovat Ctr Cell Signaling Network, State Key Lab Cellular Stress Biol, Xiamen, Peoples R China
基金
中国国家自然科学基金;
关键词
multi-omics; data integration; deep learning; single-cell; COVID-19; T-CELLS;
D O I
10.1093/bib/bbad005
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The proliferation of single-cell multimodal sequencing technologies has enabled us to understand cellular heterogeneity with multiple views, providing novel and actionable biological insights into the disease-driving mechanisms. Here, we propose a comprehensive end-to-end single-cell multimodal analysis framework named Deep Parametric Inference (DPI). DPI transforms single-cell multimodal data into a multimodal parameter space by inferring individual modal parameters. Analysis of cord blood mononuclear cells (CBMC) reveals that the multimodal parameter space can characterize the heterogeneity of cells more comprehensively than individual modalities. Furthermore, comparisons with the state-of-the-art methods on multiple datasets show that DPI has superior performance. Additionally, DPI can reference and query cell types without batch effects. As a result, DPI can successfully analyze the progression of COVID-19 disease in peripheral blood mononuclear cells (PBMC). Notably, we further propose a cell state vector field and analyze the transformation pattern of bone marrow cells (BMC) states. In conclusion, DPI is a powerful single-cell multimodal analysis framework that can provide new biological insights into biomedical researchers. The python packages, datasets and user-friendly manuals of DPI are freely available at https://github.com/studentiz/dpi.
引用
收藏
页数:13
相关论文
共 62 条
[1]   Protein tyrosine phosphatase receptor type C (PTPRC or CD45) [J].
Al Barashdi, Maryam Ahmed ;
Ali, Ahlam ;
McMullin, Mary Frances ;
Mills, Ken .
JOURNAL OF CLINICAL PATHOLOGY, 2021, 74 (09) :548-552
[2]   MOFA plus : a statistical framework for comprehensive integration of multi-modal single-cell data [J].
Argelaguet, Ricard ;
Arnol, Damien ;
Bredikhin, Danila ;
Deloro, Yonatan ;
Velten, Britta ;
Marioni, John C. ;
Stegle, Oliver .
GENOME BIOLOGY, 2020, 21 (01)
[3]   Low-Avidity CD4+ T Cell Responses to SARS-CoV-2 in Unexposed Individuals and Humans with Severe COVID-19 [J].
Bacher, Petra ;
Rosati, Elisa ;
Esser, Daniela ;
Martini, Gabriela Rios ;
Saggau, Carina ;
Schiminsky, Esther ;
Dargvainiene, Justina ;
Schroeder, Ina ;
Wieters, Imke ;
Khodamoradi, Yascha ;
Eberhardt, Fabian ;
Vehreschild, Maria J. G. T. ;
Neb, Holger ;
Sonntagbauer, Michael ;
Conrad, Claudio ;
Tran, Florian ;
Rosenstiel, Philip ;
Markewitz, Robert ;
Wandinger, Klaus-Peter ;
Augustin, Max ;
Rybniker, Jan ;
Kochanek, Matthias ;
Leypoldt, Frank ;
Cornely, Oliver A. ;
Koehler, Philipp ;
Franke, Andre ;
Scheffold, Alexander .
IMMUNITY, 2020, 53 (06) :1258-+
[4]   Generalizing RNA velocity to transient cell states through dynamical modeling [J].
Bergen, Volker ;
Lange, Marius ;
Peidli, Stefan ;
Wolf, F. Alexander ;
Theis, Fabian J. .
NATURE BIOTECHNOLOGY, 2020, 38 (12) :1408-1414
[5]   Targeting immune dysfunction in aging [J].
Borgoni, Simone ;
Kudryashova, Ksenia S. ;
Burka, Ksenia ;
de Magalhaes, Joao Pedro .
AGEING RESEARCH REVIEWS, 2021, 70
[6]   Circulating T cell-monocyte complexes are markers of immune perturbations [J].
Burel, Julie G. ;
Pomaznoy, Mikhail ;
Arlehamn, Cecilia S. Lindestam ;
Weiskopf, Daniela ;
Antunes, Ricardo da Silva ;
Jung, Yunmin ;
Babor, Mariana ;
Schulten, Veronique ;
Seumois, Gregory ;
Greenbaum, Jason A. ;
Premawansa, Sunil ;
Premawansa, Gayani ;
Wijewickrama, Ananda ;
Vidanagama, Dhammika ;
Gunasena, Bandu ;
Tippalagama, Rashmi ;
DeSilva, Aruna D. ;
Gilman, Robert H. ;
Saito, Mayuko ;
Taplitz, Randy ;
Ley, Klaus ;
Vijayanand, Pandurangan ;
Sette, Alessandro ;
Peters, Bjoern .
ELIFE, 2019, 8
[7]  
Calinski T., 1974, Commun. Stat, V3, P1, DOI DOI 10.1080/03610927408827101
[8]   Multi-omics single-cell data integration and regulatory inference with graph-linked embedding [J].
Cao, Zhi-Jie ;
Gao, Ge .
NATURE BIOTECHNOLOGY, 2022, 40 (10) :1458-+
[9]   SCID newborn screening: What we've learned [J].
Currier, Robert ;
Puck, Jennifer M. .
JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2021, 147 (02) :417-426
[10]   CLUSTER SEPARATION MEASURE [J].
DAVIES, DL ;
BOULDIN, DW .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1979, 1 (02) :224-227