In situ formed ultrafine metallic Ni from nickel (II) acetylacetonate precursor to realize an exceptional hydrogen storage performance of MgH2 -Ni-EG nanocomposite

被引:42
作者
Shen, Shaoyang [1 ,2 ]
Ouyang, Liuzhang [1 ,2 ,3 ]
Liu, Jiangwen [1 ,2 ]
Wang, Hui [1 ,2 ]
Yang, Xu-Sheng [4 ,5 ]
Zhu, Min [1 ,2 ]
机构
[1] South China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510641, Peoples R China
[2] South China Univ Technol, Key Lab Adv Energy Storage Mat Guangdong Prov, Guangzhou 510641, Peoples R China
[3] China Australia Joint Lab Energy & Environm Mat, Key Lab Fuel Cell Technol Guangdong Prov, Guangzhou 510641, Peoples R China
[4] Hong Kong Polytech Univ, Adv Mfg Technol Res Ctr, Dept Ind & Syst Engn, Hong Kong, Peoples R China
[5] Hong Kong Polytech Univ, Res Inst Smart Energy, Hong Kong, Peoples R China
关键词
Hydrogen storage; Magnesium hydride; Nickel precursor; Size effect; Expanded graphite; SUPERIOR CATALYTIC-ACTIVITY; MAGNESIUM-BASED MATERIALS; KINETICS; HYDRIDES; SCALE; CARBON;
D O I
10.1016/j.jma.2021.12.003
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
It has been well known that doping nano-scale catalysts can significantly improve both the kinetics and reversible hydrogen storage capacity of MgH2. However, so far it is still a challenge to directly synthesize ultrafine catalysts (e.g., < 5 nm), mainly because of the complicated chemical reaction processes. Here, a facile one-step high-energy ball milling process is developed to in situ form ultrafine Ni nanoparticles from the nickel acetylacetonate precursor in the MgH2 matrix. With the combined action of ultrafine metallic Ni and expanded graphite (EG), the formed MgH2Ni-EG nanocomposite with the optimized doping amounts of Ni and EG can still release 7.03 wt.% H-2 within 8.5 min at 300 degrees C after 10 cycles. At a temperature close to room temperature (50 degrees C), it can also absorb 2.42 wt.% H-2 within 1 h. It can be confirmed from the microstructural characterization analysis that the in situ formed ultrafine metallic Ni is transformed into Mg2Ni/Mg2NiH4 in the subsequent hydrogen absorption and desorption cycles. It is calculated that the dehydrogenation activation energy of the MgH2Ni-EG nanocomposite is also reduced obviously in comparison with the pure MgH2. Our work provides a methodology to significantly improve the hydrogen storage performance of MgH2 by combining the in situ formed and uniformly dispersed ultrafine metallic catalyst from the precursor and EG.(c) 2022 Chongqing University. Publishing services provided by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) Peer review under responsibility of Chongqing University
引用
收藏
页码:3174 / 3185
页数:12
相关论文
共 45 条
[1]   Hydrogen as an energy vector [J].
Abdin, Zainul ;
Zafaranloo, Ali ;
Rafiee, Ahmad ;
Merida, Walter ;
Lipinski, Wojciech ;
Khalilpour, Kaveh R. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 120
[2]   Zigzag PtCo nanowires modified in situ with Au atoms as efficient and durable electrocatalyst for oxygen reduction reaction [J].
Cao, Jidong ;
Cao, Hehuan ;
Wang, Fanghui ;
Zhu, Hong .
JOURNAL OF POWER SOURCES, 2021, 489
[3]   Porous Ni nanofibers with enhanced catalytic effect on the hydrogen storage performance of MgH2 [J].
Chen, Jie ;
Xia, Guanglin ;
Guo, Zaiping ;
Huang, Zhenguo ;
Liub, Huakun ;
Yu, Xuebin .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (31) :15843-15848
[4]   A manganese-hydrogen battery with potential for grid-scale energy storage [J].
Chen, Wei ;
Li, Guodong ;
Pei, Allen ;
Li, Yuzhang ;
Liao, Lei ;
Wang, Hongxia ;
Wan, Jiayu ;
Liang, Zheng ;
Chen, Guangxu ;
Zhang, Hao ;
Wang, Jiangyan ;
Cui, Yi .
NATURE ENERGY, 2018, 3 (05) :428-435
[5]   Mg-TM (TM: Ti, Nb, V, Co, Mo or Ni) core-shell like nanostructures: synthesis, hydrogen storage performance and catalytic mechanism [J].
Cui, Jie ;
Liu, Jiangwen ;
Wang, Hui ;
Ouyang, Liuzhang ;
Sun, Dalin ;
Zhu, Min ;
Yao, Xiangdong .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (25) :9645-9655
[6]   Dynamic Modeling of California Grid-Scale Hydrogen Energy Storage [J].
Heydarzadeh, Z. ;
McVay, D. ;
Flores, R. J. ;
Thai, C. ;
Brouwer, J. .
POLYMER ELECTROLYTE FUEL CELLS AND ELECTROLYZERS 18 (PEFC&E 18), 2018, 86 (13) :245-258
[7]   Materials for hydrogen-based energy storage - past, recent progress and future outlook [J].
Hirscher, Michael ;
Yartys, Volodymyr A. ;
Baricco, Marcello ;
von Colbe, Jose Bellosta ;
Blanchard, Didier ;
Bowman, Robert C., Jr. ;
Broom, Darren P. ;
Buckley, Craig E. ;
Chang, Fei ;
Chen, Ping ;
Cho, Young Whan ;
Crivello, Jean-Claude ;
Cuevas, Fermin ;
David, William I. F. ;
de Jongh, Petra E. ;
Denys, Roman, V ;
Dornheim, Martin ;
Felderhoff, Michael ;
Filinchuk, Yaroslav ;
Froudakis, George E. ;
Grant, David M. ;
Gray, Evan MacA ;
Hauback, Bjorn C. ;
He, Teng ;
Humphries, Terry D. ;
Jensen, Torben R. ;
Kim, Sangryun ;
Kojima, Yoshitsugu ;
Latroche, Michel ;
Li, Hai-Wen ;
Lototskyy, Mykhaylo, V ;
Makepeace, Joshua W. ;
Moller, Kasper T. ;
Naheed, Lubna ;
Ngene, Peter ;
Noreus, Dag ;
Nygard, Magnus Moe ;
Orimo, Shin-ichi ;
Paskevicius, Mark ;
Pasquini, Luca ;
Ravnsbaek, Dorthe B. ;
Sofianos, M. Veronica ;
Udovic, Terrence J. ;
Vegge, Tejs ;
Walker, Gavin S. ;
Webb, Colin J. ;
Weidenthaler, Claudia ;
Zlotea, Claudia .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 827
[8]   MOF-derived Ni nanoparticles dispersed on monolayer MXene as catalyst for improved hydrogen storage kinetics of MgH2 [J].
Huang, Tianping ;
Huang, Xu ;
Hu, Chuanzhu ;
Wang, Jie ;
Liu, Huabing ;
Xu, Hao ;
Sun, Fengzhan ;
Ma, Zhewen ;
Zou, Jianxin ;
Ding, Wenjiang .
CHEMICAL ENGINEERING JOURNAL, 2021, 421
[9]   Catalytic Tuning of Sorption Kinetics of Lightweight Hydrides: A Review of the Materials and Mechanism [J].
Jain, Ankur ;
Agarwal, Shivani ;
Ichikawa, Takayuki .
CATALYSTS, 2018, 8 (12)
[10]   Metallic Ni nanocatalyst in situ formed from a metal-organic-framework by mechanochemical reaction for hydrogen storage in magnesium [J].
Jia, Yi ;
Sun, Chenghua ;
Peng, Ye ;
Fang, Wenqi ;
Yan, Xuecheng ;
Yang, Dongjiang ;
Zou, Jin ;
Mao, Samuel S. ;
Yao, Xiangdong .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (16) :8294-8299