Lie symmetry analysis, optimal system, symmetry reductions and analytic solutions for a (2+1)-dimensional generalized nonlinear evolution system in a fluid or a plasma

被引:36
|
作者
Zhou, Tian-Yu
Tian, Bo [1 ]
Shen, Yuan
Cheng, Chong-Dong
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Fluid; (2+1)-dimensional generalized nonlinear; evolution system; Lie symmetry analysis; Optimal system; Symmetry reductions; EQUATION;
D O I
10.1016/j.cjph.2023.05.017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nonlinear evolution equations are used to describe such nonlinear phenomena as the solitons, travelling waves and breathers in fluid mechanics, plasma physics and optics. In this paper, we investigate a (2+1)-dimensional generalized nonlinear evolution system in a fluid or a plasma. Via the Lie symmetry analysis, we acquire the Lie point symmetry generators and Lie symmetry groups of that system. Via the optimal system method, we derive the optimal system of the 1 dimensional subalgebras. Based on the symmetry generators in that optimal system, we give some symmetry reductions for the (2+1)-dimensional generalized nonlinear evolution system. Finally, via those symmetry reductions, we acquire some soliton, rational-type and power-series solutions.
引用
收藏
页码:343 / 356
页数:14
相关论文
共 50 条
  • [21] Symmetry analysis, optimal system, and invariant solutions for a (2+1)-dimensional two-phase mass flow model
    Maurya, Sandhya
    Zeidan, Dia
    Pandey, Manoj
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2024, 158
  • [22] Symmetry group analysis and similarity solutions for the (2+1)-dimensional coupled Burger's system
    El-Sayed, M. F.
    Moatimid, G. M.
    Moussa, M. H. M.
    El-Shiekh, R. M.
    El-Satar, A. A.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (08) : 1113 - 1120
  • [23] An Extended (2+1)-dimensional Coupled Burgers System in Fluid Mechanics: Symmetry Reductions; Kudryashov Method; Conservation Laws
    Adem, A. R.
    Muatjetjeja, B.
    Moretlo, T. S.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2023, 62 (02)
  • [24] Lie symmetry analysis, conservation laws and analytical solutions for chiral nonlinear Schrodinger equation in (2+1)-dimensions
    Mao, Jin-Jin
    Tian, Shou-Fu
    Zhang, Tian-Tian
    Yan, Xing-Jie
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2020, 25 (03): : 358 - 377
  • [25] Optimal System, Symmetry Reductions and Exact Solutions of the (2+1)-Dimensional Seventh-Order Caudrey-Dodd-Gibbon-KP Equation
    Qin, Mengyao
    Wang, Yunhu
    Yuen, Manwai
    SYMMETRY-BASEL, 2024, 16 (04):
  • [26] Lie Symmetry Analysis,Bcklund Transformations and Exact Solutions to (2+1)-Dimensional Burgers' Types of Equations
    刘汉泽
    李继彬
    刘磊
    Communications in Theoretical Physics, 2012, (05) : 737 - 742
  • [27] Painleve analysis, auto-Backlund transformation and analytic solutions of a (2+1)-dimensional generalized Burgers system with the variable coefficients in a fluid
    Zhou, Tian-Yu
    Tian, Bo
    Chen, Yu-Qi
    Shen, Yuan
    NONLINEAR DYNAMICS, 2022, 108 (03) : 2417 - 2428
  • [28] A (2+1)-dimensional variable-coefficients extension of the Date-Jimbo-Kashiwara-Miwa equation: Lie symmetry analysis, optimal system and exact solutions
    Hu, Yuru
    Zhang, Feng
    Xin, Xiangpeng
    Liu, Hanze
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (05) : 2011 - 2021
  • [29] Symmetry Reductions and Exact Solutions of the (2+1)-Dimensional Navier-Stokes Equations
    Hu, Xiaorui
    Dong, Zhongzhou
    Huang, Fei
    Chen, Yong
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2010, 65 (6-7): : 504 - 510
  • [30] Symbolic Computation on a (2+1)-Dimensional Generalized Nonlinear Evolution System in Fluid Dynamics, Plasma Physics, Nonlinear Optics and Quantum Mechanics
    Gao, Xin-Yi
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (05)