Lie symmetry analysis, optimal system, symmetry reductions and analytic solutions for a (2+1)-dimensional generalized nonlinear evolution system in a fluid or a plasma

被引:37
作者
Zhou, Tian-Yu
Tian, Bo [1 ]
Shen, Yuan
Cheng, Chong-Dong
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Fluid; (2+1)-dimensional generalized nonlinear; evolution system; Lie symmetry analysis; Optimal system; Symmetry reductions; EQUATION;
D O I
10.1016/j.cjph.2023.05.017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nonlinear evolution equations are used to describe such nonlinear phenomena as the solitons, travelling waves and breathers in fluid mechanics, plasma physics and optics. In this paper, we investigate a (2+1)-dimensional generalized nonlinear evolution system in a fluid or a plasma. Via the Lie symmetry analysis, we acquire the Lie point symmetry generators and Lie symmetry groups of that system. Via the optimal system method, we derive the optimal system of the 1 dimensional subalgebras. Based on the symmetry generators in that optimal system, we give some symmetry reductions for the (2+1)-dimensional generalized nonlinear evolution system. Finally, via those symmetry reductions, we acquire some soliton, rational-type and power-series solutions.
引用
收藏
页码:343 / 356
页数:14
相关论文
共 58 条
[11]   In oceanography, acoustics and hydrodynamics: investigations on an extended coupled (2+1)-dimensional Burgers system [J].
Gao, Xiao-Tian ;
Tian, Bo ;
Feng, Chun-Hui .
CHINESE JOURNAL OF PHYSICS, 2022, 77 :2818-2824
[12]   Water-wave studies on a (2+1)-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system [J].
Gao, Xiao-Tian ;
Tian, Bo .
APPLIED MATHEMATICS LETTERS, 2022, 128
[13]  
Gao XY, 2025, RIC MAT, V74, P575, DOI 10.1007/s11587-023-00769-x
[14]   SHALLOW-WATER INVESTIGATIONS: BILINEAR AUTO-BACKLUND TRANSFORMATIONS FOR A (3+1)-DIMENSIONAL GENERALIZED NONLINEAR EVOLUTION SYSTEM [J].
Gao, Xin-Yi ;
Guo, Yong-Jiang ;
Shan, Wen-Rui .
APPLIED AND COMPUTATIONAL MATHEMATICS, 2023, 22 (01) :133-142
[15]   On a generalized Broer-Kaup-Kupershmidt system for the long waves in shallow water [J].
Gao, Xin-Yi ;
Guo, Yong-Jiang ;
Shan, Wen-Rui .
NONLINEAR DYNAMICS, 2023, 111 (10) :9431-9437
[16]   On a Whitham-Broer-Kaup-like system arising in the oceanic shallow water [J].
Gao, Xin-Yi ;
Guo, Yong-Jiang ;
Shan, Wen-Rui .
CHINESE JOURNAL OF PHYSICS, 2023, 82 :194-200
[17]   Symbolically Computing the Shallow Water via a (2+1)-Dimensional Generalized Modified Dispersive Water-Wave System: Similarity Reductions, Scaling and Hetero-Backlund Transformations [J].
Gao, Xin-Yi ;
Guo, Yong-Jiang ;
Shan, Wen-Rui .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (01)
[18]   Magnetooptic Studies on a Ferromagnetic Material via an Extended (3+1)-Dimensional Variable-Coefficient Modified Kadomtsev-Petviashvili System [J].
Gao, Xin-Yi ;
Guo, Yong-Jiang ;
Shan, Wen-Rui ;
Du, Zhong ;
Chen, Yu-Qi .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (04)
[19]   Reflecting upon some electromagnetic waves in a ferromagnetic film via a variable-coefficient modified Kadomtsev-Petviashvili system [J].
Gao, Xin-Yi ;
Guo, Yong-Jiang ;
Shan, Wen-Rui .
APPLIED MATHEMATICS LETTERS, 2022, 132