Sharp regularity for a singular fully nonlinear parabolic free boundary problem

被引:1
作者
Araujo, Damiao J. [1 ]
Sa, Ginaldo S. [1 ]
Urbano, Jose Miguel [2 ,3 ]
机构
[1] Univ Fed Paraiba, Dept Math, BR-58059900 Joao Pessoa, PB, Brazil
[2] King Abdullah Univ Sci & Technol KAUST, Appl Math & Computat Sci Program AMCS, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi Arabia
[3] Univ Coimbra, Dept Math, CMUC, P-3000143 Coimbra, Portugal
关键词
Sharp regularity; Singular parabolic PDEs; Viscosity solutions; Free boundary; VISCOSITY SOLUTIONS;
D O I
10.1016/j.jde.2024.01.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper establishes sharp local regularity estimates for viscosity solutions of fully nonlinear parabolic free boundary problems with singular absorption terms. The main difficulties are due to the blow-up of the source along the free boundary and the lack of a variational structure. The proof combines the power of the Ishii-Lions method with intrinsically parabolic oscillation estimates. The results are new, even for second-order linear operators in nondivergence form. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页码:90 / 113
页数:24
相关论文
共 20 条
[1]  
ALT HW, 1981, J REINE ANGEW MATH, V325, P105
[2]  
ALT HW, 1986, J REINE ANGEW MATH, V368, P63
[3]   Geometric Approach to Nonvariational Singular Elliptic Equations [J].
Araujo, Damiao ;
Teixeira, Eduardo V. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 209 (03) :1019-1054
[4]   Regularity of a free boundary in parabolic potential theory [J].
Caffarelli, L ;
Petrosyan, A ;
Shahgholian, H .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (04) :827-869
[5]  
Caffarelli L.A., 1995, Differential Integral Equations, V8, P1585
[6]   FREE-BOUNDARY PROBLEM FOR THE HEAT-EQUATION ARISING IN FLAME PROPAGATION [J].
CAFFARELLI, LA ;
VAZQUEZ, JL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (02) :411-441
[7]  
Caffarelli LA, 1997, INDIANA U MATH J, V46, P719
[8]  
Caffarelli LA, 1997, INDIANA U MATH J, V46, P453
[9]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[10]  
El Hajj L, 2022, Arxiv, DOI arXiv:2207.01157