Online Anomaly Explanation: A Case Study on Predictive Maintenance

被引:3
作者
Ribeiro, Rita P. [1 ,2 ]
Mastelini, Saulo Martiello [3 ]
Davari, Narjes [1 ]
Aminian, Ehsan [1 ]
Veloso, Bruno [1 ,2 ,4 ,5 ]
Gama, Joao [1 ,2 ,5 ]
机构
[1] INESC TEC, P-4200465 Porto, Portugal
[2] Univ Porto, Fac Sci, P-4169007 Porto, Portugal
[3] Univ S Paulo, ICMC, BR-13566590 Sao Carlos, Brazil
[4] Univ Portucalense, P-4200072 Porto, Portugal
[5] Univ Porto, Fac Econ, P-4200464 Porto, Portugal
来源
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II | 2023年 / 1753卷
基金
巴西圣保罗研究基金会;
关键词
Explainable AI; Rare events; Predictive maintenance;
D O I
10.1007/978-3-031-23633-4_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Predictive Maintenance applications are increasingly complex, with interactions between many components. Black-box models are popular approaches due to their predictive accuracy and are based on deep-learning techniques. This paper presents an architecture that uses an online rule learning algorithm to explain when the black-box model predicts rare events. The system can present global explanations that model the black-box model and local explanations that describe why the black-box model predicts a failure. We evaluate the proposed system using four real-world public transport data sets, presenting illustrative examples of explanations.
引用
收藏
页码:383 / 399
页数:17
相关论文
共 17 条
[1]   Chebyshev approaches for imbalanced data streams regression models [J].
Aminian, Ehsan ;
Ribeiro, Rita P. ;
Gama, Joao .
DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 35 (06) :2389-2466
[2]  
Bifet A, 2007, PROCEEDINGS OF THE SEVENTH SIAM INTERNATIONAL CONFERENCE ON DATA MINING, P443
[3]   A Survey of Predictive Modeling on Im balanced Domains [J].
Branco, Paula ;
Torgo, Luis ;
Ribeiro, Rita P. .
ACM COMPUTING SURVEYS, 2016, 49 (02)
[4]   Adaptive Model Rules From High-Speed Data Streams [J].
Duarte, Joao ;
Gama, Joao ;
Bifet, Albert .
ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2016, 10 (03)
[5]  
Finch T, 2009, Technical Report
[6]   A Survey of Methods for Explaining Black Box Models [J].
Guidotti, Riccardo ;
Monreale, Anna ;
Ruggieri, Salvatore ;
Turin, Franco ;
Giannotti, Fosca ;
Pedreschi, Dino .
ACM COMPUTING SURVEYS, 2019, 51 (05)
[7]  
Hall P., 2019, An Introduction to Machine Learning Interpretability, V2nd ed.
[8]  
Lundberg SM, 2017, ADV NEUR IN, V30
[9]   Using dynamical quantization to perform split attempts in online tree regressors [J].
Mastelini, Saulo Martiello ;
de Leon Ferreira de Carvalho, Andre Carlos Ponce .
PATTERN RECOGNITION LETTERS, 2021, 145 :37-42
[10]  
Molnar C., 2022, INTERPRETABLE MACHIN