Global-local-global context-aware network for salient object detection in optical remote sensing images

被引:22
作者
Bai, Zhen [1 ,2 ]
Li, Gongyang [1 ,2 ]
Liu, Zhi [1 ,2 ]
机构
[1] Shanghai Univ, Shanghai Inst Adv Commun & Data Sci, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Salient object detection; Optical remote sensing images; Transformer; Dynamic filter; Attention mechanism; EFFICIENT; TARGETS;
D O I
10.1016/j.isprsjprs.2023.03.013
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
For the salient object detection in optical remote sensing images (ORSI-SOD), many existing methods are trapped in a local-global mode, i.e., CNN-based encoder binds with a specific global context-aware module, struggling to deal with the challenging ORSIs with complex background and scale-variant objects. To solve this issue, we explore the synergy of the global-context-aware and local-context-aware modeling and construct a preferable global-local-global context-aware network (GLGCNet). In the GLGCNet, a transformer-based encoder is adopted to extract global representations, combining with local-context-aware features gathered from three saliency-up modules for comprehensive saliency modeling, and an edge assignment module is additionally employed to refine the preliminary detection. Specifically, the saliency-up module involves two components, one for global-local context-aware transfer towards pixel-wise dynamic convolution parameters prediction, the other for dynamically local-context aware modeling. The corresponding position-sensitive filter is aware of its previous global-wise focus, thus enhancing the spatial compactness of salient objects and encouraging the feature upsampling achievement for multi-scale feature combinations. The edge assignment module enhances the robustness of preliminary saliency prediction and assigns the semantic attributes of preliminary saliency cues to the shallow-level edge feature to obtain final complete salient objects in a spatially and semantically global manner. Extensive experiments demonstrate that the proposed GLGCNet surpasses 23 state-of-the-art methods on three popular datasets.
引用
收藏
页码:184 / 196
页数:13
相关论文
共 92 条
[1]  
Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
[2]   Lidar point-to-point correspondences for rigorous registration of kinematic scanning in dynamic networks [J].
Brun, Aurelien ;
Cucci, Davide A. ;
Skaloud, Jan .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 189 :185-200
[3]   Pre-Trained Image Processing Transformer [J].
Chen, Hanting ;
Wang, Yunhe ;
Guo, Tianyu ;
Xu, Chang ;
Deng, Yiping ;
Liu, Zhenhua ;
Ma, Siwei ;
Xu, Chunjing ;
Xu, Chao ;
Gao, Wen .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :12294-12305
[4]  
Chen J., 2021, arXiv, DOI DOI 10.48550/ARXIV.2102.04306
[5]  
Chen LC, 2017, Arxiv, DOI [arXiv:1706.05587, 10.48550/arXiv.1706.05587]
[6]   Dynamic Convolution: Attention over Convolution Kernels [J].
Chen, Yinpeng ;
Dai, Xiyang ;
Liu, Mengchen ;
Chen, Dongdong ;
Yuan, Lu ;
Liu, Zicheng .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11027-11036
[7]  
Chen ZY, 2020, AAAI CONF ARTIF INTE, V34, P10599
[8]   RRNet: Relational Reasoning Network With Parallel Multiscale Attention for Salient Object Detection in Optical Remote Sensing Images [J].
Cong, Runmin ;
Zhang, Yumo ;
Fang, Leyuan ;
Li, Jun ;
Zhao, Yao ;
Kwong, Sam .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[9]   Deformable Convolutional Networks [J].
Dai, Jifeng ;
Qi, Haozhi ;
Xiong, Yuwen ;
Li, Yi ;
Zhang, Guodong ;
Hu, Han ;
Wei, Yichen .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :764-773
[10]  
Deng ZJ, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P684