Quantitative differential phase contrast phase reconstruction for sparse samples

被引:8
作者
Peng, Tao [1 ]
Ke, Zeyu [1 ]
Zhang, Shuhe [1 ]
He, Jun [1 ]
Wang, Peng [1 ]
Wang, Fengsong [2 ]
Zhong, Zhensheng [1 ]
Fang, Shu [1 ]
Shi, Hui [1 ]
Lu, Rongsheng [3 ]
Zhou, Jinhua [1 ,4 ]
机构
[1] Anhui Med Univ, Sch Biomed Engn, Hefei 230032, Peoples R China
[2] Anhui Med Univ, Coll Life Sci, Hefei 230032, Peoples R China
[3] Hefei Univ Technol, Sch Instrument Sci & Optoelect Engn, Anhui Prov Key Lab Measuring Theory & Precis Instr, Hefei 230009, Peoples R China
[4] Anhui Med Univ, Anhui Prov Inst Translat Med, 3D Printing & Tissue Engn Ctr, Hefei 230032, Peoples R China
关键词
Quantitative differential phase contrast; imaging; Phase reconstruction; Regularization; Image denoising; TOTAL VARIATION REGULARIZATION; OF-INTENSITY EQUATION; HIGH-RESOLUTION; MICROSCOPY; TRANSPORT; ILLUMINATION; MINIMIZATION; ALGORITHM; RECOVERY; APERTURE;
D O I
10.1016/j.optlaseng.2023.107478
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantitative differential phase contrast (qDPC) microscopy can achieve phase imaging of unlabeled cell samples with high spatial resolution. However, qDPC imaging is easily affected by the noise generated in the experiments. In this manuscript, the L 0-norm regularization was introduced into qDPC phase reconstruction for sparse samples (L0-qDPC), including the quantitative phase target and cell samples. After the detailed comparison of phase fidelity, imaging contrast, resolution, and convergence rate, L 0-qDPC method can provide a stable qDPC phase imaging without parameter adjustment for sparse samples due to strong constraint and good robustness of L 0 -norm based on sparse prior, compared with the L 2-norm and total variation regularization.
引用
收藏
页数:10
相关论文
共 58 条
[1]   Phase sensitivity in differential phase contrast microscopy: limits and strategies to improve it [J].
Bonati, Chiara ;
Laforest, Timothe ;
Kunzi, Mathieu ;
Moser, Christophe .
OPTICS EXPRESS, 2020, 28 (22) :33767-33783
[2]   Variational Phase Imaging Using the Transport-of-Intensity Equation [J].
Bostan, Emrah ;
Froustey, Emmanuel ;
Nilchian, Masih ;
Sage, Daniel ;
Unser, Michael .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (02) :807-817
[3]   Self-calibrated 3D differential phase contrast microscopy with optimized illumination [J].
Cao, Ruiming ;
Kellman, Michael ;
Ren, David ;
Eckert, Regina ;
Waller, Laura .
BIOMEDICAL OPTICS EXPRESS, 2022, 13 (03) :1671-1684
[4]   Fast image deconvolution using closed-form thresholding formulas of Lq(q=1/2, 2/3) regularization [J].
Cao, Wenfei ;
Sun, Jian ;
Xu, Zongben .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2013, 24 (01) :31-41
[5]   Isotropic differential phase contrast microscopy for quantitative phase bio-imaging [J].
Chen, Hsi-Hsun ;
Lin, Yu-Zi ;
Luo, Yuan .
JOURNAL OF BIOPHOTONICS, 2018, 11 (08)
[6]   Quantitative differential phase contrast (DPC) microscopy with computational aberration correction [J].
Chen, Michael ;
Phillips, Zachary F. ;
Waller, Laura .
OPTICS EXPRESS, 2018, 26 (25) :32888-32899
[7]   3D differential phase contrast microscopy [J].
Chen, Michael ;
Tian, Lei ;
Waller, Laura .
BIOMEDICAL OPTICS EXPRESS, 2016, 7 (10) :3940-3950
[8]   Digital holography for quantitative phase-contrast imaging [J].
Cuche, E ;
Bevilacqua, F ;
Depeursinge, C .
OPTICS LETTERS, 1999, 24 (05) :291-293
[9]   Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution [J].
Dey, N ;
Blanc-Feraud, L ;
Zimmer, C ;
Roux, P ;
Kam, Z ;
Olivo-Marin, JC ;
Zerubia, J .
MICROSCOPY RESEARCH AND TECHNIQUE, 2006, 69 (04) :260-266
[10]   Salt and pepper noise removal based on an approximation of l0 norm [J].
Dong, Fangfang ;
Chen, Yunmei ;
Kong, De-Xing ;
Yang, Bailin .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (05) :789-804