Weak Solutions for Double Phase Problem Driven by the (p(x), q(x))-Laplacian Operator Under Dirichlet Boundary Conditions

被引:2
作者
El Ouaarabi, Mohamed [1 ]
Allalou, Chakir [1 ]
Melliani, Said [1 ]
机构
[1] Sultan Moulay Slimane Univ, Fac Sci & Technol, Lab LMACS, BP 523, Beni Mellal 23000, Morocco
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2023年 / 41卷
关键词
Double phase problem; (p(x); q(x))-Laplacian operators; Topological degree methods; Variable exponent Sobolev spaces; VARIABLE EXPONENT; FUNCTIONALS; REGULARITY; EXISTENCE; MINIMIZERS; CALCULUS;
D O I
10.5269/bspm.62182
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, in view of the topological degree methods and the theory of the variable exponent Sobolev spaces, we discuss a Dirichlet boundary value problem for elliptic equations involving the (p(x), q(x))-Laplacian operator with a reaction term depending on the gradient and on two real parameters. Under certain assumptions, we establish the existence of at least one weak solution to this problem. Our results extends some recent work in the literature.
引用
收藏
页码:19 / 19
页数:1
相关论文
共 32 条
[1]   New diffusion models in image processing [J].
Aboulaich, R. ;
Meskine, D. ;
Souissi, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (04) :874-882
[2]   Regularity results for a class of functionals with non-standard growth [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) :121-140
[3]  
Alsaedi R, 2016, ELECTRON J DIFFER EQ
[4]  
[Anonymous], 2011, J Math Sci, DOI DOI 10.1007/S10958-011-0260-7
[5]   A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions [J].
Antontsev, SN ;
Shmarev, SI .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (03) :515-545
[6]   Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves [J].
Bahrouni, Anouar ;
Radulescu, Vicentiu D. ;
Repovs, Dusan D. .
NONLINEARITY, 2019, 32 (07) :2481-2495
[7]   Solitons in several space dimensions: Derrick's problem and infinitely many solutions [J].
Benci, V ;
D'Avenia, P ;
Fortunato, D ;
Pisani, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 154 (04) :297-324
[8]   Extension of the Leray-Schauder degree for abstract Hammerstein type mappings [J].
Berkovits, J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 234 (01) :289-310
[9]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[10]   On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian [J].
Cherfils, L ;
Il'Yasov, Y .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2005, 4 (01) :9-22