A RADON TYPE TRANSFORM RELATED TO THE EULER EQUATIONS FOR IDEAL FLUID

被引:0
作者
Sharafutdinov, V. A. [1 ]
机构
[1] Sobolev Inst Math, Pr Koptyuga 4, Novosibirsk 630090, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2023年 / 20卷 / 02期
关键词
Euler equations; Nadirashvili; Vladuts transform; tensor tomography; FLOW;
D O I
10.33048/semi.2023.020.054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Nadirashvili - Vladuts transform N that integrates second rank tensor fields f on Rn over hyperplanes. More precisely, for a hyperplane P and vector. parallel to P, Nf(P,.) is the integral of the function fij(x). i.j over P, where. is the unit normal vector to P. We prove that, given a vector field v, the tensor field f = v. v belongs to the kernel of N if and only if there exists a function p such that (v, p) is a solution to the Euler equations. Then we study the Nadirashvili - Vladuts potential w(x, xi) determined by a solution to the Euler equations. The function w solves some 4th order PDE. We describe all solutions to the latter equation.
引用
收藏
页码:880 / 912
页数:33
相关论文
共 49 条
[41]   Long time existence of classical solutions for the rotating Euler equations and related models in the optimal Sobolev space [J].
Jia, Houyu ;
Wan, Renhui .
NONLINEARITY, 2020, 33 (08) :3763-3780
[42]   The 2D Euler–Boussinesq Equations in Planar Polygonal Domains with Yudovich’s Type Data [J].
Huang A. .
Communications in Mathematics and Statistics, 2014, 2 (3-4) :369-391
[43]   Computational Fluid Dynamics and Experimental Validations of the Direct Coupling Between Interior, Intermediate and Exterior Ballistics Using the Euler Equations [J].
Cayzac, Roxan ;
Carette, Eric ;
de Roquefort, Thierry Alziary ;
Renard, Francois-Xavier ;
Roux, Dominique ;
Balbo, Patrick ;
Patry, Jean-Noel .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2011, 78 (06)
[44]   High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations [J].
Liu, Wei ;
Cheng, Juan ;
Shu, Chi-Wang .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (23) :8872-8891
[45]   ON A ν-CONTINUOUS FAMILY OF STRONG SOLUTIONS TO THE EULER OR NAVIER-STOKES EQUATIONS WITH THE NAVIER-TYPE BOUNDARY CONDITION [J].
Bellout, Hamid ;
Neustupa, Jiri ;
Penel, Patrick .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (04) :1353-1373
[46]   Split-type implicit scheme using flux splitting and dual-time step for euler equations [J].
Dong, Haitao ;
Chen, Zhe ;
Liu, Fujun .
Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2015, 41 (05) :776-785
[47]   Degenerate Goursat-type boundary value problems arising from the study of two-dimensional isothermal Euler equations [J].
Hu, Yanbo ;
Li, Jiequan ;
Sheng, Wancheng .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (06) :1021-1046
[48]   PETROV-GALERKIN FINITE-ELEMENT TYPE APPROXIMATIONS OF K-DIAGONALIZABLE HYPERBOLIC SYSTEMS - APPLICATIONS TO MULTIDIMENSIONAL EULER EQUATIONS [J].
AUDOUNET, J ;
MOREUX, V .
RECHERCHE AEROSPATIALE, 1991, (06) :27-45
[49]   A novel Lax-Wendroff type procedure of two-derivative time-stepping schemes for Euler and Navier-Stokes equations [J].
Qin, Xueyu ;
Zhang, Xin ;
Yu, Jian ;
Yan, Chao .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 140