A RADON TYPE TRANSFORM RELATED TO THE EULER EQUATIONS FOR IDEAL FLUID

被引:0
作者
Sharafutdinov, V. A. [1 ]
机构
[1] Sobolev Inst Math, Pr Koptyuga 4, Novosibirsk 630090, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2023年 / 20卷 / 02期
关键词
Euler equations; Nadirashvili; Vladuts transform; tensor tomography; FLOW;
D O I
10.33048/semi.2023.020.054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Nadirashvili - Vladuts transform N that integrates second rank tensor fields f on Rn over hyperplanes. More precisely, for a hyperplane P and vector. parallel to P, Nf(P,.) is the integral of the function fij(x). i.j over P, where. is the unit normal vector to P. We prove that, given a vector field v, the tensor field f = v. v belongs to the kernel of N if and only if there exists a function p such that (v, p) is a solution to the Euler equations. Then we study the Nadirashvili - Vladuts potential w(x, xi) determined by a solution to the Euler equations. The function w solves some 4th order PDE. We describe all solutions to the latter equation.
引用
收藏
页码:880 / 912
页数:33
相关论文
共 49 条