A RADON TYPE TRANSFORM RELATED TO THE EULER EQUATIONS FOR IDEAL FLUID

被引:0
作者
Sharafutdinov, V. A. [1 ]
机构
[1] Sobolev Inst Math, Pr Koptyuga 4, Novosibirsk 630090, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2023年 / 20卷 / 02期
关键词
Euler equations; Nadirashvili; Vladuts transform; tensor tomography; FLOW;
D O I
10.33048/semi.2023.020.054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Nadirashvili - Vladuts transform N that integrates second rank tensor fields f on Rn over hyperplanes. More precisely, for a hyperplane P and vector. parallel to P, Nf(P,.) is the integral of the function fij(x). i.j over P, where. is the unit normal vector to P. We prove that, given a vector field v, the tensor field f = v. v belongs to the kernel of N if and only if there exists a function p such that (v, p) is a solution to the Euler equations. Then we study the Nadirashvili - Vladuts potential w(x, xi) determined by a solution to the Euler equations. The function w solves some 4th order PDE. We describe all solutions to the latter equation.
引用
收藏
页码:880 / 912
页数:33
相关论文
共 49 条
  • [21] The limits of Riemann solutions to Euler equations of compressible fluid flow with a source term
    Sheng, Shouqiong
    Shao, Zhiqiang
    JOURNAL OF ENGINEERING MATHEMATICS, 2020, 125 (01) : 1 - 22
  • [22] Approximation of 2D Euler Equations by the Second-Grade Fluid Equations with Dirichlet Boundary Conditions
    Milton C. Lopes Filho
    Helena J. Nussenzveig Lopes
    Edriss S. Titi
    Aibin Zang
    Journal of Mathematical Fluid Mechanics, 2015, 17 : 327 - 340
  • [23] Symmetry Analysis of Ideal Fluid Equations in Terms of Trajectories and Weber's Potential
    Andreev, Victor K.
    Krasnova, Darla A.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2019, 12 (02): : 133 - 144
  • [24] Axisymmetric weak solutions of the 3-D Euler equations for incompressible fluid flows
    Chae, D
    Kim, N
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 29 (12) : 1393 - 1404
  • [25] Maximum entropy production as a necessary admissibility condition for the fluid Navier–Stokes and Euler equations
    James Glimm
    Daniel Lazarev
    Gui-Qiang G. Chen
    SN Applied Sciences, 2020, 2
  • [26] Non-helical exact solutions to the Euler equations for swirling axisymmetric fluid flows
    Prosviryakov, E. Yu.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2019, 23 (04): : 764 - 770
  • [27] Maximum entropy production as a necessary admissibility condition for the fluid Navier-Stokes and Euler equations
    Glimm, James
    Lazarev, Daniel
    Chen, Gui-Qiang G.
    SN APPLIED SCIENCES, 2020, 2 (12):
  • [28] A Riccati-type solution of 3D Euler equations for incompressible flow
    Ershkov, Sergey, V
    Shamin, Roman, V
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2020, 32 (01) : 125 - 130
  • [29] On the Explicit Solutions of Separation of Variables Type for the Incompressible 2D Euler Equations
    Tomi Saleva
    Jukka Tuomela
    Journal of Mathematical Fluid Mechanics, 2021, 23
  • [30] On the Explicit Solutions of Separation of Variables Type for the Incompressible 2D Euler Equations
    Saleva, Tomi
    Tuomela, Jukka
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2021, 23 (02)