A RADON TYPE TRANSFORM RELATED TO THE EULER EQUATIONS FOR IDEAL FLUID

被引:0
|
作者
Sharafutdinov, V. A. [1 ]
机构
[1] Sobolev Inst Math, Pr Koptyuga 4, Novosibirsk 630090, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2023年 / 20卷 / 02期
关键词
Euler equations; Nadirashvili; Vladuts transform; tensor tomography; FLOW;
D O I
10.33048/semi.2023.020.054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Nadirashvili - Vladuts transform N that integrates second rank tensor fields f on Rn over hyperplanes. More precisely, for a hyperplane P and vector. parallel to P, Nf(P,.) is the integral of the function fij(x). i.j over P, where. is the unit normal vector to P. We prove that, given a vector field v, the tensor field f = v. v belongs to the kernel of N if and only if there exists a function p such that (v, p) is a solution to the Euler equations. Then we study the Nadirashvili - Vladuts potential w(x, xi) determined by a solution to the Euler equations. The function w solves some 4th order PDE. We describe all solutions to the latter equation.
引用
收藏
页码:880 / 912
页数:33
相关论文
共 49 条
  • [1] The Lie-Poisson structure of the Euler equations of an ideal fluid
    Vasylkevych, Sergiy
    Marsden, Jerrold E.
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2005, 2 (04) : 281 - 300
  • [2] ON THE BLOW-UP PROBLEM FOR THE EULER EQUATIONS AND THE LIOUVILLE TYPE RESULTS IN THE FLUID EQUATIONS
    Chae, Dongho
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2013, 6 (05): : 1139 - 1150
  • [3] Systems of Hydrodynamic Type that Approximate Two-Dimensional Ideal Fluid Equations
    Dymnikov, V. P.
    Perezhogin, P. A.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2018, 54 (03) : 232 - 241
  • [4] Voronoi Fluid Particle Model for Euler Equations
    Mar Serrano
    Pep Español
    Ignacio Zúñiga
    Journal of Statistical Physics, 2005, 121 : 133 - 147
  • [5] Voronoi fluid particle model for Euler equations
    Serrano, M
    Español, P
    Zúñiga, I
    JOURNAL OF STATISTICAL PHYSICS, 2005, 121 (1-2) : 133 - 147
  • [6] Existence of solutions for the equations modeling the motion of rigid bodies in an ideal fluid
    Houot, Jean Gabriel
    San Martin, Jorge
    Tucsnak, Marius
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (11) : 2856 - 2885
  • [7] Notes on the incompressible Euler and related equations on ℝN
    Dongho Chae
    Chinese Annals of Mathematics, Series B, 2009, 30 : 513 - 526
  • [8] Notes on the Incompressible Euler and Related Equations on RN
    Chae, Dongho
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2009, 30 (05) : 513 - 526
  • [9] A MUSCL-type segregated - explicit staggered scheme for the Euler equations
    Gastaldo, Laura
    Herbin, Raphaele
    Latche, Jean-Claude
    Therme, Nicolas
    COMPUTERS & FLUIDS, 2018, 175 : 91 - 110
  • [10] Approximation of 2D Euler Equations by the Second-Grade Fluid Equations with Dirichlet Boundary Conditions
    Lopes Filho, Milton C.
    Lopes, Helena J. Nussenzveig
    Titi, Edriss S.
    Zang, Aibin
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2015, 17 (02) : 327 - 340