Life Cycle Assessment in the Building Sector - Greenhouse Gas Emissions of Common Ceiling Systems

被引:0
|
作者
Heckmann, Michael [1 ]
Glock, Christian [1 ]
机构
[1] Tech Univ Kaiserslautern, RPTU Rheinland Pfalz Tech Univ Kaiserslautern Land, Fachgebiet Mass Bau & Baukonstrukt, Paul Ehrlich Str 14, D-67663 Kaiserslautern, Germany
关键词
life cycle assessment; global warming potential; GWP; greenhouse gas emissions; CO2; comparison of ceilings; resource efficiency; sustainable building; sustainability assessment; building construction;
D O I
10.1002/best.202200102
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In the past, life cycle assessments (LCAs) of buildings were only carried out in rare cases at the request of project initiators. Against the backdrop of social and political pressure to act more climate-friendly and sustainably, LCAs and the available data are also becoming increasingly economically relevant. This paper therefore presents the essential principles of LCA in the building sector. In addition to a critical analysis of the scope of assessment, there is a brief presentation of available data bases, such as the national database oKOBAUDAT. Furthermore, the greenhouse gas balance of timber as a building material is discussed, which in some cases opens up considerable scope for assessment with the risk of false incentives. As horizontal building components, ceiling systems of multi-storey buildings can cause almost 40 % of the structural emissions and are therefore highly relevant for a LCA. By varying the life cycle stages assessed and data sets used as possible factors influencing the results of a LCA, these building components are examined and compared in more detail in the following article. Despite some sensitive effects on the comparison of the ceiling systems, the LCA offers a decision-making aid for the selection of ceiling systems in terms of reduced greenhouse gas emissions of a shell construction.
引用
收藏
页码:110 / 123
页数:14
相关论文
共 50 条
  • [41] Assessment Model for Energy Consumption and Greenhouse Gas Emissions during Building Construction
    Hong, Taehoon
    Ji, ChangYoon
    Jang, MinHo
    Park, HyoSeon
    JOURNAL OF MANAGEMENT IN ENGINEERING, 2014, 30 (02) : 226 - 235
  • [42] REASSESSMENT OF LIFE CYCLE GREENHOUSE GAS EMISSIONS FOR SOYBEAN BIODIESEL
    Pradhan, A.
    Shrestha, D. S.
    Van Gerpen, J.
    McAloon, A.
    Yee, W.
    Haas, M.
    Duffield, J. A.
    TRANSACTIONS OF THE ASABE, 2012, 55 (06) : 2257 - 2264
  • [43] Energy mix-driven dynamic life cycle assessment on greenhouse gas emissions of passenger cars in China
    Lu, Yu
    Liu, Qiang
    Li, Bo
    Jiang, Qiong
    Li, Qing
    JOURNAL OF CLEANER PRODUCTION, 2024, 466
  • [44] Life cycle emissions of greenhouse gas for ammonia scrubbing technology
    Shujuan Wang
    Fang Liu
    Changhe Chen
    Xuchang Xu
    Korean Journal of Chemical Engineering, 2007, 24 : 495 - 498
  • [45] Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation
    Warner, Ethan S.
    Heath, Garvin A.
    JOURNAL OF INDUSTRIAL ECOLOGY, 2012, 16 : S73 - S92
  • [46] Life cycle greenhouse gas emissions in California rice production
    Brodt, Sonja
    Kendall, Alissa
    Moharnmadi, Yaser
    Arslan, Aslihan
    Yuan, Juhong
    Lee, In-Sung
    Linquist, Bruce
    FIELD CROPS RESEARCH, 2014, 169 : 89 - 98
  • [47] Life Cycle Greenhouse Gas Emissions of Gastrointestinal Biopsies in a Surgical Pathology Laboratory
    Gordon, Ilyssa O.
    Sherman, Jodi D.
    Leapman, Michael
    Overcash, Michael
    Thiel, Cassandra L.
    AMERICAN JOURNAL OF CLINICAL PATHOLOGY, 2021, 156 (04) : 540 - 549
  • [48] Uncertainty in the life cycle assessment of building emissions: A comparative case study of stochastic approaches
    Zhang, Xiaocun
    Zheng, Rongyue
    Wang, Fenglai
    BUILDING AND ENVIRONMENT, 2019, 147 : 121 - 131
  • [49] Impacts of soil carbon sequestration on life cycle greenhouse gas emissions in Midwestern USA beef finishing systems
    Stanley, Paige L.
    Rowntree, Jason E.
    Beede, David K.
    DeLonge, Marcia S.
    Hamm, Michael W.
    AGRICULTURAL SYSTEMS, 2018, 162 : 249 - 258
  • [50] Life Cycle Assessment of fossil energy use and greenhouse gas emissions in Chinese pear production
    Liu, Yuexian
    Langer, Vibeke
    Hogh-Jensen, Henning
    Egelyng, Henrik
    JOURNAL OF CLEANER PRODUCTION, 2010, 18 (14) : 1423 - 1430