Hypolipidemic mechanism of Pleurotus eryngii polysaccharides in high-fat diet-induced obese mice based on metabolomics

被引:12
|
作者
Zhao, Yuanyuan [1 ]
Zhang, Zhen [1 ]
Wang, Li [1 ]
Li, Wen [1 ]
Du, Jianming [1 ]
Zhang, Shengxiang [1 ]
Chen, Xuefeng [2 ]
机构
[1] Gansu Agr Univ, Coll Food Sci & Engn, Lanzhou, Peoples R China
[2] Shaanxi Univ Sci & Technol, Sch Food & Biol Engn, Xian, Peoples R China
来源
FRONTIERS IN NUTRITION | 2023年 / 10卷
关键词
Pleurotus eryngii polysaccharides; obesity; structural characterization; metabolic pathways; metabolic differences; OXIDATIVE STRESS; GUT MICROBIOTA; METABOLISM; EXTRACTION;
D O I
10.3389/fnut.2023.1118923
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
ObjectiveIn this study, the structure of Pleurotus eryngii polysaccharides (PEPs) was characterized, and the mechanism of PEP on obesity and hyperlipidemia induced by high-fat diet was evaluated by metabonomic analysis. MethodsThe structure of PEPs were characterized by monosaccharide composition, Fourier transform infrared spectroscopy and thermogravimetry. In animal experiments, H&E staining was used to observe the morphological difference of epididymal adipose tissue of mice in each group. Ultrahigh performance liquid chromatography (UHPLC)-(QE) HFX -mass spectrometry (MS) was used to analyze the difference of metabolites in serum of mice in each group and the related metabolic pathways. ResultsThe PEPs contained nine monosaccharides: 1.05% fucose, 0.30% arabinose, 17.94% galactose, 53.49% glucose, 1.24% xylose, 23.32% mannose, 1.30% ribose, 0.21%galacturonic acid, and 1.17% glucuronic acid. The PEPs began to degrade at 251 degrees C (T0), while the maximum thermal degradation rate temperature (Tm) appeared at 300 degrees C. The results histopathological observation demonstrated that the PEPs had signifificant hypolipidemic activities. After PEPs intervention, the metabolic profile of mice changed significantly. A total of 29 different metabolites were selected as adjunctive therapy to PEPs, for treatment of obesity and hyperlipidemia-related complications caused by a high-fat diet. These metabolites include amino acids, unsaturated fatty acids, choline, glycerol phospholipids, and other endogenous compounds, which can prevent and treat obesity and hyperlipidemia caused by a high-fat diet by regulating amino acid metabolism, fatty acid metabolism, and changes in metabolic pathways such as that involved in the citric cycle (TCA cycle). ConclusionsThe presented results indicate that PEPs treatment can alleviate the obesity and hyperlipidemia caused by a high-fat diet and, thus, may be used as a functional food adjuvant, providing a theoretical basis and technical guidance for the prevention and treatment of high-fat diet-induced obesity and hyperlipidemia.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Naringenin suppresses neutrophil infiltration into adipose tissue in high-fat diet-induced obese mice
    Tsuhako, Rika
    Yoshida, Hiroki
    Sugita, Chihiro
    Kurokawa, Masahiko
    JOURNAL OF NATURAL MEDICINES, 2020, 74 (01) : 229 - 237
  • [42] Pandanus amaryllifoliusleaf extract improves insulin sensitivity in high-fat diet-induced obese mice
    Suphaket SAENTAWEESUK
    Jarinyaporn NAOWABOOT
    Nuntiya SOMPARN
    中国药理学与毒理学杂志, 2015, 29(S1) (S1) : 70 - 70
  • [43] Inhibition of glucocorticoid synthesis alleviates cognitive impairment in high-fat diet-induced obese mice
    Janthakhin, Yoottana
    Kingtong, Sutin
    Juntapremjit, Sirikran
    COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY, 2022, 10
  • [44] Hydroxytyrosol Improves Obesity and Insulin Resistance by Modulating Gut Microbiota in High-Fat Diet-Induced Obese Mice
    Liu, Zhuoqun
    Wang, Ningning
    Ma, Yanan
    Wen, Deliang
    FRONTIERS IN MICROBIOLOGY, 2019, 10
  • [45] Kaempferol ameliorates metabolic syndrome by inhibiting inflammation and oxidative stress in high-fat diet-induced obese mice
    Shin, Su-Kyung
    Kwon, Eun-Young
    NUTRITION RESEARCH AND PRACTICE, 2024, 18 (03) : 325 - 344
  • [46] Anti-obesity effect of escin: a study on high-fat diet-induced obese mice
    Zhang, Q-H
    Cui, X-Y
    Wang, D.
    Jin, Y.
    Guan, Y-X
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2022, 26 (21) : 7797 - 7812
  • [47] Resveratrol and Oxyresveratrol Activate Thermogenesis via Different Transcriptional Coactivators in High-Fat Diet-Induced Obese Mice
    Pan, Min-Hsiung
    Koh, Yen-Chun
    Lee, Tzu-Ling
    Wang, Bini
    Chen, Wen-Kang
    Nagabhushanam, Kalyanam
    Ho, Chi-Tang
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2019, 67 (49) : 13605 - 13616
  • [48] Tetrahydrocurcumin Ameliorates Skin Inflammation by Modulating Autophagy in High-Fat Diet-Induced Obese Mice
    Kim, Jung Eun
    Kim, Hye Ran
    Kim, Jin Cheol
    Lee, Eun Soo
    Chung, Choon Hee
    Lee, Eun Young
    Chung, Bo Young
    BIOMED RESEARCH INTERNATIONAL, 2021, 2021
  • [49] Agavins Increase Neurotrophic Factors and Decrease Oxidative Stress in the Brains of High-Fat Diet-Induced Obese Mice
    Franco-Robles, Elena
    Lopez, Mercedes G.
    MOLECULES, 2016, 21 (08):
  • [50] Electroacupuncture Prevents Osteoarthritis of High-Fat Diet-Induced Obese Rats
    Xie, Lin-Lin
    Zhao, Yu-Li
    Yang, Jian
    Cheng, Hui
    Zhong, Zhen-Dong
    Liu, Yi-Ru
    Pang, Xian-Lun
    BIOMED RESEARCH INTERNATIONAL, 2020, 2020