ACSN: Attention capsule sampling network for diagnosing COVID-19 based on chest CT scans

被引:10
|
作者
Wen, Cuihong [1 ,5 ]
Liu, Shaowu [1 ]
Liu, Shuai [1 ,2 ,3 ]
Heidari, Ali Asghar [4 ]
Hijji, Mohammad [6 ]
Zarco, Carmen [7 ]
Muhammad, Khan [8 ,9 ]
机构
[1] Hunan Normal Univ, Coll Informat Sci & Engn, Changsha 410081, Peoples R China
[2] Hunan Normal Univ, Sch Educ Sci, Changsha 410081, Peoples R China
[3] Hunan Normal Univ, Key Lab Big Data Res & Applicat Basic Educ, Changsha 410081, Peoples R China
[4] Univ Tehran, Coll Engn, Sch Surveying & Geospatial Engn, Tehran 1439957131, Iran
[5] Peking Univ, Coll Engn, Dept Adv Mfg & Robot, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
[6] Univ Tabuk, Fac Comp & Informat Technol FCIT, Tabuk 47711, Saudi Arabia
[7] Univ Granada UGR, Andalusian Res Inst Data Sci & Computat Intelligen, Granada, Spain
[8] Sungkyunkwan Univ, Coll Comp & Informat, Sch Convergence, Dept Appl AI,Visual Analyt Knowledge Lab VIS2KNOW, Seoul 03063, South Korea
[9] Sungkyunkwan Univ, Coll Comp & Informat, Seoul 03063, South Korea
基金
中国国家自然科学基金;
关键词
COVID-19; recognition; Capsule network; Lung infections; Chest CT scan; Deep learning; Feature sampling; PNEUMONIA; FRAMEWORK;
D O I
10.1016/j.compbiomed.2022.106338
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Automated diagnostic techniques based on computed tomography (CT) scans of the chest for the coronavirus disease (COVID-19) help physicians detect suspected cases rapidly and precisely, which is critical in providing timely medical treatment and preventing the spread of epidemic outbreaks. Existing capsule networks have played a significant role in automatic COVID-19 detection systems based on small datasets. However, extracting key slices is difficult because CT scans typically show many scattered lesion sections. In addition, existing max pooling sampling methods cannot effectively fuse the features from multiple regions. Therefore, in this study, we propose an attention capsule sampling network (ACSN) to detect COVID-19 based on chest CT scans. A key slices enhancement method is used to obtain critical information from a large number of slices by applying attention enhancement to key slices. Then, the lost active and background features are retained by integrating two types of sampling. The results of experiments on an open dataset of 35,000 slices show that the proposed ACSN achieve high performance compared with state-of-the-art models and exhibits 96.3% accuracy, 98.8% sensitivity, 93.8% specificity, and 98.3% area under the receiver operating characteristic curve.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] COVID-19 Diagnosis in Computerized Tomography (CT) and X-ray Scans Using Capsule Neural Network
    Akinyelu, Andronicus A.
    Bah, Bubacarr
    DIAGNOSTICS, 2023, 13 (08)
  • [32] Self-attention-driven retrieval of chest CT images for COVID-19 assessment
    Fili, Victoria
    Savelonas, Michalis
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2024, 10 (02)
  • [33] LiMS-Net: A Lightweight Multi-Scale CNN for COVID-19 Detection from Chest CT Scans
    Joshi, Amogh Manoj
    Nayak, Deepak Ranjan
    Das, Dibyasundar
    Zhang, Yudong
    ACM TRANSACTIONS ON MANAGEMENT INFORMATION SYSTEMS, 2023, 14 (01)
  • [34] IoT-enabled stacked ensemble of deep neural networks for the diagnosis of COVID-19 using chest CT scans
    Shorfuzzaman, Mohammad
    COMPUTING, 2023, 105 (04) : 887 - 908
  • [36] Loop Residual Attention Network for Automatic Segmentation of COVID-19 Chest X-Ray Images
    Yue, Gongtao
    Lin, Jie
    An, Ziheng
    Yang, Yongsheng
    IEEE ACCESS, 2023, 11 : 47480 - 47490
  • [37] Identification and Severity Assessment of COVID-19 Using Lung CT Scans
    Thyagachandran, Anand
    Balachandran, Aathira
    Murthy, Hema A.
    IEEE ACCESS, 2023, 11 : 124542 - 124555
  • [38] AANet: Adaptive Attention Network for COVID-19 Detection From Chest X-Ray Images
    Lin, Zhijie
    He, Zhaoshui
    Xie, Shengli
    Wang, Xu
    Tan, Ji
    Lu, Jun
    Tan, Beihai
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (11) : 4781 - 4792
  • [39] Deep transfer learning based classification model for covid-19 using chest CT-scans
    Lahsaini, Ilyas
    El Habib Daho, Mostafa
    Chikh, Mohamed Amine
    PATTERN RECOGNITION LETTERS, 2021, 152 : 1 - 7
  • [40] Blockchain-Federated and Deep-Learning-Based Ensembling of Capsule Network with Incremental Extreme Learning Machines for Classification of COVID-19 Using CT Scans
    Malik, Hassaan
    Anees, Tayyaba
    Naeem, Ahmad
    Naqvi, Rizwan Ali
    Loh, Woong-Kee
    BIOENGINEERING-BASEL, 2023, 10 (02):