Improvement of Retinal Vessel Segmentation Method Based on U-Net

被引:8
|
作者
Wang, Ning [1 ]
Li, Kefeng [1 ]
Zhang, Guangyuan [1 ]
Zhu, Zhenfang [1 ]
Wang, Peng [1 ,2 ]
机构
[1] Shandong Jiaotong Univ, Sch Informat Sci & Elect Engn, Jinan 250357, Peoples R China
[2] Shandong Acad Sci, Inst Automat, Jinan 250013, Peoples R China
基金
中国博士后科学基金;
关键词
retinal vessels segmentation; U-Net; feature extraction; NETWORK;
D O I
10.3390/electronics12020262
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Retinal vessel segmentation remains a challenging task because the morphology of the retinal vessels reflects the health of a person, which is essential for clinical diagnosis. Therefore, achieving accurate segmentation of the retinal vessel shape can determine the patient's physical condition in a timely manner and can prevent blindness in patients. Since the traditional retinal vascular segmentation method is manually operated, this can be time-consuming and laborious. With the development of convolutional neural networks, U-shaped networks (U-Nets) and variants show good performance in image segmentation. However, U-Net is prone to feature loss due to the operation of the encoder convolution layer and also causes the problem of mismatch in the processing of contextual information features caused by the skip connection part. Therefore, we propose an improvement of the retinal vessel segmentation method based on U-Net to segment retinal vessels accurately. In order to extract more features from encoder features, we replace the convolutional layer with ResNest network structure in feature extraction, which aims to enhance image feature extraction. In addition, a Depthwise FCA Block (DFB) module is proposed to deal with the mismatched processing of local contextual features by skip connections. Combined with the two public datasets on retinal vessel segmentation, namely DRIVE and CHASE_DB1, and comparing our method with a larger number of networks, the experimental results confirmed the effectiveness of the proposed method. Our method is better than most segmentation networks, demonstrating the method's significant clinical value.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Multiscale U-Net with Spatial Positional Attention for Retinal Vessel Segmentation
    Liu, Congjun
    Gu, Penghui
    Xiao, Zhiyong
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [32] Atrous residual convolutional neural network based on U-Net for retinal vessel segmentation
    Wu, Jin
    Liu, Yong
    Zhu, Yuanpei
    Li, Zun
    PLOS ONE, 2022, 17 (08):
  • [33] Improved U-Net Segmentation Algorithm for the Retinal Blood Vessel Images
    Li Daxiang
    Zhang Zhen
    ACTA OPTICA SINICA, 2020, 40 (10)
  • [34] Retinal vessel segmentation using dense U-net with multiscale inputs
    Yue, Kejuan
    Zou, Beiji
    Chen, Zailiang
    Liu, Qing
    JOURNAL OF MEDICAL IMAGING, 2019, 6 (03)
  • [35] CRAUNet: A cascaded residual attention U-Net for retinal vessel segmentation
    Dong, Fangfang
    Wu, Dengyang
    Guo, Chenying
    Zhang, Shuting
    Yang, Bailin
    Gong, Xiangyang
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 147
  • [36] Attention-inception-based U-Net for retinal vessel segmentation with advanced residual
    Wang, Huadeng
    Xu, Guang
    Pan, Xipeng
    Liu, Zhenbing
    Tang, Ningning
    Lan, Rushi
    Luo, Xiaonan
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 98
  • [37] Enhanced U-Net Model for High Precision Retinal Vessel Segmentation
    Zong, Yun
    Shao, Jiahao
    Liu, Zhao
    PROCEEDINGS OF 2023 4TH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE FOR MEDICINE SCIENCE, ISAIMS 2023, 2023, : 69 - 73
  • [38] 3AU-Net: Triple Attention U-Net for Retinal Vessel Segmentation
    Jin, Logan
    PROCEEDINGS OF 2020 IEEE 2ND INTERNATIONAL CONFERENCE ON CIVIL AVIATION SAFETY AND INFORMATION TECHNOLOGY (ICCASIT), 2020, : 612 - 615
  • [39] DAU-Net: a novel U-Net with dual attention for retinal vessel segmentation
    Jian, Muwei
    Xu, Wenjing
    Nie, Changqun
    Li, Shuo
    Yang, Songwen
    Li, Xiaoguang
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2025, 11 (02):
  • [40] ILU-Net: Inception-Like U-Net for retinal vessel segmentation
    Zhu, Zifan
    An, Qing
    Wang, Zhicheng
    Li, Qian
    Fang, Hao
    Huang, Zhenghua
    OPTIK, 2022, 260