Improvement of Retinal Vessel Segmentation Method Based on U-Net

被引:8
|
作者
Wang, Ning [1 ]
Li, Kefeng [1 ]
Zhang, Guangyuan [1 ]
Zhu, Zhenfang [1 ]
Wang, Peng [1 ,2 ]
机构
[1] Shandong Jiaotong Univ, Sch Informat Sci & Elect Engn, Jinan 250357, Peoples R China
[2] Shandong Acad Sci, Inst Automat, Jinan 250013, Peoples R China
基金
中国博士后科学基金;
关键词
retinal vessels segmentation; U-Net; feature extraction; NETWORK;
D O I
10.3390/electronics12020262
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Retinal vessel segmentation remains a challenging task because the morphology of the retinal vessels reflects the health of a person, which is essential for clinical diagnosis. Therefore, achieving accurate segmentation of the retinal vessel shape can determine the patient's physical condition in a timely manner and can prevent blindness in patients. Since the traditional retinal vascular segmentation method is manually operated, this can be time-consuming and laborious. With the development of convolutional neural networks, U-shaped networks (U-Nets) and variants show good performance in image segmentation. However, U-Net is prone to feature loss due to the operation of the encoder convolution layer and also causes the problem of mismatch in the processing of contextual information features caused by the skip connection part. Therefore, we propose an improvement of the retinal vessel segmentation method based on U-Net to segment retinal vessels accurately. In order to extract more features from encoder features, we replace the convolutional layer with ResNest network structure in feature extraction, which aims to enhance image feature extraction. In addition, a Depthwise FCA Block (DFB) module is proposed to deal with the mismatched processing of local contextual features by skip connections. Combined with the two public datasets on retinal vessel segmentation, namely DRIVE and CHASE_DB1, and comparing our method with a larger number of networks, the experimental results confirmed the effectiveness of the proposed method. Our method is better than most segmentation networks, demonstrating the method's significant clinical value.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] MSR U-Net: An Improved U-Net Model for Retinal Blood Vessel Segmentation
    Kande, Giri Babu
    Ravi, Logesh
    Kande, Nitya
    Nalluri, Madhusudana Rao
    Kotb, Hossam
    Aboras, Kareem M.
    Yousef, Amr
    Ghadi, Yazeed Yasin
    Sasikumar, A.
    IEEE Access, 2024, 12 : 534 - 551
  • [12] VGA-Net: Vessel graph based attentional U-Net for retinal vessel segmentation
    Jalali, Yeganeh
    Fateh, Mansoor
    Rezvani, Mohsen
    IET IMAGE PROCESSING, 2024, 18 (08) : 2191 - 2213
  • [13] Dual Encoding U-Net for Retinal Vessel Segmentation
    Wang, Bo
    Qiu, Shuang
    He, Huiguang
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT I, 2019, 11764 : 84 - 92
  • [14] U-Net with Attention Mechanism for Retinal Vessel Segmentation
    Si, Ze
    Fu, Dongmei
    Li, Jiahao
    IMAGE AND GRAPHICS, ICIG 2019, PT II, 2019, 11902 : 668 - 677
  • [15] Feature pyramid U-Net for retinal vessel segmentation
    Liu, Yi-Peng
    Rui, Xue
    Li, Zhanqing
    Zeng, Dongxu
    Li, Jing
    Chen, Peng
    Liang, Ronghua
    IET IMAGE PROCESSING, 2021, 15 (08) : 1733 - 1744
  • [16] Retinal Vessel Segmentation with Differentiated U-Net Network
    Arpaci, Saadet Aytac
    Varli, Songul
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [17] The study of retinal vessel segmentation based on improved U-net algorithm
    Sheni, Tongping
    Menchita, Dumlao
    2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 518 - 522
  • [18] Automatic Retinal Vessel Segmentation Based on an Improved U-Net Approach
    Huang, Zihe
    Fang, Ying
    Huang, He
    Xu, Xiaomei
    Wang, Jiwei
    Lai, Xiaobo
    SCIENTIFIC PROGRAMMING, 2021, 2021
  • [19] Retinal blood vessel segmentation based on Densely Connected U-Net
    Cheng, Yinlin
    Ma, Mengnan
    Zhang, Liangjun
    Jin, ChenJin
    Ma, Li
    Zhou, Yi
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (04) : 3088 - 3108
  • [20] A Multi-Scale Feature Fusion Method Based on U-Net for Retinal Vessel Segmentation
    Yang, Dan
    Liu, Guoru
    Ren, Mengcheng
    Xu, Bin
    Wang, Jiao
    ENTROPY, 2020, 22 (08)