Development of a vertex finding algorithm using Recurrent Neural Network

被引:3
|
作者
Goto, Kiichi [1 ,4 ,6 ]
Suehara, Taikan [1 ,2 ,3 ,4 ,6 ]
Yoshioka, Tamaki [1 ,2 ,3 ,4 ,6 ]
Kurata, Masakazu [4 ,6 ]
Nagahara, Hajime [4 ,5 ,6 ]
Nakashima, Yuta [4 ,5 ,6 ]
Takemura, Noriko [4 ,5 ,6 ]
Iwasaki, Masako [4 ,5 ,6 ,7 ,8 ]
机构
[1] Kyushu Univ, Grad Sch Sci, Dept Phys, Fukuoka, Japan
[2] Kyushu Univ, Fac Sci, Dept Phys, Fukuoka, Japan
[3] Kyushu Univ, Res Ctr Adv Particle Phys RCAPP, Fukuoka, Japan
[4] Univ Tokyo, Grad Sch Sci, Dept Phys, Tokyo, Japan
[5] Osaka Univ, Inst Databil Sci IDS, Suita, Japan
[6] Osaka City Univ, Grad Sch Sci, Dept Math & Phys, Osaka, Japan
[7] Osaka City Univ, Nambu Yoichiro Inst Theoret & Expt Phys NITEP, Osaka, Japan
[8] Osaka Univ, Res Ctr Nucl Phys RCNP, Suita, Japan
来源
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT | 2023年 / 1047卷
关键词
International linear collider; Vertex finding; Recurrent Neural Network; Attention; LHC;
D O I
10.1016/j.nima.2022.167836
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Deep learning is a rapidly-evolving technology with the possibility to significantly improve the physics reach of collider experiments. In this study we developed a novel vertex finding algorithm for future lepton colliders such as the International Linear Collider. We deploy two networks: one consists of simple fully-connected layers to look for vertex seeds from track pairs, and the other is a customized Recurrent Neural Network with an attention mechanism and an encoder-decoder structure to associate tracks to the vertex seeds. The performance of the vertex finder is compared with the standard ILC vertex reconstruction algorithm.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A NEURAL NETWORK PARALLEL ALGORITHM FOR CLIQUE VERTEX-PARTITION PROBLEMS
    FUNABIKI, N
    TAKEFUJI, Y
    LEE, KC
    CHO, YB
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1992, 72 (03) : 357 - 372
  • [22] Secondary vertex finding in jets with neural networks
    Shlomi, Jonathan
    Ganguly, Sanmay
    Gross, Eilam
    Cranmer, Kyle
    Lipman, Yaron
    Serviansky, Hadar
    Maron, Haggai
    Segol, Nimrod
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (06):
  • [23] A new learning algorithm for diagonal recurrent neural network
    Deng, XL
    Xie, JY
    Guo, WZ
    Liu, J
    ADVANCES IN NATURAL COMPUTATION, PT 1, PROCEEDINGS, 2005, 3610 : 44 - 50
  • [24] Research on fast training algorithm for recurrent neural network
    Gong, DW
    Xu, SF
    Sun, XY
    ISIE 2001: IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS PROCEEDINGS, VOLS I-III, 2001, : 446 - 448
  • [25] A genetic algorithm to obtain the optimal recurrent neural network
    Blanco, A
    Delgado, M
    Pegalajar, MC
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2000, 23 (01) : 67 - 83
  • [26] Secondary vertex finding in jets with neural networks
    Jonathan Shlomi
    Sanmay Ganguly
    Eilam Gross
    Kyle Cranmer
    Yaron Lipman
    Hadar Serviansky
    Haggai Maron
    Nimrod Segol
    The European Physical Journal C, 2021, 81
  • [27] Classification of pancreatic cancer stadium using recurrent neural network (RNN) model algorithm
    Fajar, R.
    Kurniastuti, N. I.
    CLINICA CHIMICA ACTA, 2022, 530 : S32 - S32
  • [28] Classification of Esophageal Cancer Stadium using Recurrent Neural Network (RNN) Model Algorithm
    Fajar, Rifaldy
    Kurniastuti, Nana Indri
    Jupri, Prihantini
    Sari, Dewi Mustika
    CANCER SCIENCE, 2021, 112 : 432 - 432
  • [29] Holt-Winters Algorithm to Predict the Stock Value Using Recurrent Neural Network
    Mohan, M.
    Raja, P. C. Kishore
    Velmurugan, P.
    Kulothungan, A.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 35 (01): : 1151 - 1163
  • [30] Structured learning in recurrent neural network using genetic algorithm with internal copy operator
    Kumagai, T
    Wada, M
    Mikami, S
    Hashimoto, R
    PROCEEDINGS OF 1997 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION (ICEC '97), 1997, : 651 - 656