Corrosion behaviour of the microbially modified surface of 5083 aluminium alloy

被引:13
作者
Nkoua, C. [1 ]
Josse, C. [2 ]
Proietti, A. [2 ]
Basseguy, R. [3 ]
Blanc, C. [1 ]
机构
[1] Univ Toulouse, CNRS, INP, ENSIACET,CIRIMAT, 4 Allee Emile Monso,CS 44362, F-31030 Toulouse 4, France
[2] Univ Toulouse, CNRS, INP, UPS,INSA,UAR Raimond Castaing, 3 Rue Caroline Aigle, F-31400 Toulouse, France
[3] Univ Toulouse, CNRS, INP, LGC,UPS, 4 Allee Emile Monso,CS 44362, F-31030 Toulouse 4, France
关键词
A; aluminium; intermetallics; B; polarization; C; pitting corrosion; microbiological corrosion; AL-MG ALLOYS; INTERMETALLIC PHASES; PERFORMANCE; AA5083;
D O I
10.1016/j.corsci.2022.110812
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The influence of microorganism-induced surface modifications on the corrosion behaviour of 5083 H11 aluminium alloy was studied. Pre-immersion in natural seawater (between 15 days and 2 months) led to the growth of a dense oxy-hydroxyde layer on the AA5083 surface. This layer led to a decrease in the cathodic and corrosion current densities, and an increase in the passivity domain on the polarisation curves plotted in chloride-containing sulphate solution for pre-immersed samples compared to bare samples. This improvement in the corrosion behaviour of AA5083 depended on the alloy microstructure, and the sunlight exposure during the pre-immersion in natural seawater.
引用
收藏
页数:16
相关论文
共 43 条
[1]   Localized alkaline corrosion of alloy AA5083 in neutral 3.5% NaCl solution [J].
Aballe, A ;
Bethencourt, M ;
Botana, FJ ;
Cano, MJ ;
Marcos, M .
CORROSION SCIENCE, 2001, 43 (09) :1657-1674
[2]  
Basseguy R., 2014, Understanding Biocorrosion, P107, DOI [10.1533/9781782421252.1.107, DOI 10.1533/9781782421252.1.107]
[3]   The strength and thermal stability of Al-5Mg alloys nano-engineered using methods of metal forming [J].
Bazarnik, Piotr ;
Lewandowska, Malgorzata ;
Andrzejczuk, Mariusz ;
Kurzydlowski, Krzysztof J. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 556 :134-139
[4]  
Bethencourt M, 2000, EUROCORR, V2000
[5]   Corrosion behaviour of aluminium alloys in deep-sea environment: A review and the KM3NeT test results [J].
Canepa, Elisa ;
Stifanese, Roberto ;
Merotto, Lorenzo ;
Traverso, Pierluigi .
MARINE STRUCTURES, 2018, 59 :271-284
[6]   The effect of chromic sulfate concentration and immersion time on the structures and anticorrosive performance of the Cr(III) conversion coatings on aluminum alloys [J].
Chen, Wei-Kun ;
Bai, Ching-Yuan ;
Liu, Chung-Ming ;
Lin, Chao-Sung ;
Ger, Ming-Der .
APPLIED SURFACE SCIENCE, 2010, 256 (16) :4924-4929
[7]   Microstructure and corrosion characterization of the interfacial region in dissimilar friction stir welded AA5083 to AA7023 [J].
Davoodi, Ali ;
Esfahani, Zohreh ;
Sarvghad, Madjid .
CORROSION SCIENCE, 2016, 107 :133-144
[8]   Study of microbiologically induced corrosion of 5052 aluminum alloy by sulfate-reducing bacteria in seawater [J].
de Andrade, Jessica Simoes ;
Santos Vieira, Magda Rosangela ;
Oliveira, Sara Horacio ;
de Melo Santos, Suseanne Kedma ;
Urtiga Filho, Severino Leopoldino .
MATERIALS CHEMISTRY AND PHYSICS, 2020, 241
[9]   Processes of carbonate precipitation in modern microbial mats [J].
Dupraz, Christophe ;
Reid, R. Pamela ;
Braissant, Olivier ;
Decho, Alan W. ;
Norman, R. Sean ;
Visscher, Pieter T. .
EARTH-SCIENCE REVIEWS, 2009, 96 (03) :141-162
[10]   Control of second-phase particles in the Al-Mg-Mn alloy AA 5083 [J].
Engler, Olaf ;
Miller-Jupp, Simon .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 689 :998-1010