3D Printing of Liquid Metals: Recent Advancements and Challenges

被引:30
|
作者
Zou, Zhongfei [1 ]
Chen, Yuewei [2 ,3 ]
Yuan, Sen [1 ]
Luo, Nan [1 ]
Li, Jiachun [2 ]
He, Yong [3 ,4 ]
机构
[1] Guizhou Inst Technol, Sch Mech Engn, Guiyang 550003, Peoples R China
[2] Guizhou Univ, Sch Mech Engn, Guiyang 550025, Peoples R China
[3] Zhejiang Univ, Sch Mech Engn, Hangzhou 310027, Peoples R China
[4] Zhejiang Univ, State Key Lab Fluid Power & Mechatron Syst, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
3D printing; flexible electronics; gallium-based; liquid metals; TRIBOELECTRIC NANOGENERATOR; GALLIUM-INDIUM; STRETCHABLE ELECTRONICS; CONDUCTIVE POLYMER; STRAIN SENSORS; FABRICATION; ALLOY; INTERFACES; HEATERS; SYSTEM;
D O I
10.1002/adfm.202213312
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of flexible electronics (FEs) has rapidly accelerated in numerous fields due to their exceptional deformability, bending, and stretchability. Room-temperature gallium-based liquid metals (LMs) are considered as efficient conductive materials for FEs due to their outstanding electrical conductivity and intrinsic flexibility. Recently, 3D printing has become a promising technique for fabricating FEs. However, the poor printability due to high surface tension and fluidity offers huge challenges in the 3D printing of LMs. This review summarizes the effective strategies to address these challenges. It primarily focuses on three points: 1) how to improve the printability of LM and its wettability with the substrate, 2) how to select the appropriate printing method to improve the printing speed and ensure the resolution of printing structure, and 3) how to provide perfect encapsulation for LM-based FEs with 3D printing. Following a brief introduction, the mainstream printing technologies and recent developments in the 3D printing of LMs are provided, with an emphasis on the selection of printing method, improvement of printability, encapsulation, and conductivity activation. Then, the revolutionary changes attained after 3D printing of LMs are specifically focused upon. Finally, opinions and potential directions for this thriving discipline are explored.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] 3D Printing in Pharmaceutical and Medical Applications – Recent Achievements and Challenges
    Witold Jamróz
    Joanna Szafraniec
    Mateusz Kurek
    Renata Jachowicz
    Pharmaceutical Research, 2018, 35
  • [22] 3D Printing of Physical Organ Models: Recent Developments and Challenges
    Jin, Zhongboyu
    Li, Yuanrong
    Yu, Kang
    Liu, Linxiang
    Fu, Jianzhong
    Yao, Xinhua
    Zhang, Aiguo
    He, Yong
    ADVANCED SCIENCE, 2021, 8 (17)
  • [23] 3D Printing of Free Standing Liquid Metal Microstructures
    Ladd, Collin
    So, Ju-Hee
    Muth, John
    Dickey, Michael D.
    ADVANCED MATERIALS, 2013, 25 (36) : 5081 - 5085
  • [24] Liquid Metal Core-Shell 3D Printing
    Ames, Daniel C.
    Lazarus, Nathan
    Mueller, Jochen
    ADVANCED ENGINEERING MATERIALS, 2025,
  • [25] Advancements in Digital Manufacturing for Metal 3D Printing
    Liu Zhuangzhuang
    Ding Minglu
    Xie Jianxin
    ACTA METALLURGICA SINICA, 2024, 60 (05) : 569 - 584
  • [26] Advancements and Limitations in 3D Printing Materials and Technologies: A Critical Review
    Iftekar, Syed Fouzan
    Aabid, Abdul
    Amir, Adibah
    Baig, Muneer
    POLYMERS, 2023, 15 (11)
  • [27] 3D Printing/Bioprinting Based Tailoring of in Vitro Tissue Models: Recent Advances and Challenges
    Mehrotra, Shreya
    Moses, Joseph Christakiran
    Bandyopadhyay, Ashutosh
    Mandal, Biman B.
    ACS APPLIED BIO MATERIALS, 2019, 2 (04) : 1385 - 1405
  • [28] Recent Advances in 3D Printing for Parenteral Applications
    Ivone, Ryan
    Yang, Yan
    Shen, Jie
    AAPS JOURNAL, 2021, 23 (04)
  • [29] Ten challenges in 3D printing
    William Oropallo
    Les A. Piegl
    Engineering with Computers, 2016, 32 : 135 - 148
  • [30] 3D printing for remote housing: Benefits and challenges
    Bazli, Milad
    Ashrafi, Hamed
    Rajabipour, Ali
    Kutay, Cat
    AUTOMATION IN CONSTRUCTION, 2023, 148